skip to main content


Title: Twenty‐First‐Century Climate Education: Developing Diverse, Confident, and Competent Leaders in Environmental Sustainability
Abstract

With climate change impacting systems globally at alarming rates, the need for educating the next generation of environmental stewards is necessary. The Rocky Mountain Sustainability and Science Network (RMSSN) is an immersive field experience for undergraduate and graduate students interested in climate change and sustainability within National Parks. The program was established to educate and cultivate a diverse audience of future leaders, environmental guardians, and sustainability advocates with a focus on engaging underrepresented minorities (URM) in science. Participants were evaluated through efficacy instruments and focus groups to determine how a short‐term research experience could impact a student's future outlook and perceived ability to impact science and sustainability. Findings indicate URM, and majority students were more confident in their abilities, and more motivated to continue within their studies. RMSSN provides a framework that is translatable to other field‐based curriculums. This paper addresses specific engagement mechanisms for educating future science leaders.

 
more » « less
Award ID(s):
1930417
NSF-PAR ID:
10457852
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
The Bulletin of the Ecological Society of America
Volume:
101
Issue:
2
ISSN:
0012-9623
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. At Michigan State University (MSU), the AGEP learning community features the participation of over 70% of the African-American, Latinx, and Native-American under-represented minorities (URM), also referred to as Black, Indigenous, and People of Color (BIPOC) doctoral students in fields sponsored by the National Science Foundation (NSF). Monthly learning community (LC) meetings allow AGEP participants to create dialogues across disciplines through informal oral presentations about current research. The learning communities also offer opportunities to share key information regarding graduate school success and experience; thus providing a social network that extends beyond the academic setting. At MSU, AGEP also provides an interdisciplinary and multigenerational environment that includes graduate students, faculty members, post-docs and prospective graduate students. Using monthly surveys over a 4-year period, we evaluated the impact of this AGEP initiative focusing on the utility of the program, perceptions of departmental climate, career plans and institutional support. Findings indicate that AGEP participants consider their experiences in the program as vital elements in the development of their professional identity, psychological safety, and career readiness. Experiences that were identified included networking across departments, focus on career placement, involvement in minority recruitment and professional development opportunities. Additionally, AGEP community participants resonated with the “sense of community” that is at the core of the MSU AGEP program legacy. In this article, we proposed a variation of Tomlinson’s Graduate Student Capital model to describe the AGEP participants’ perceptions and experiences in MSU AGEP. Within this 4-year period, we report over 70% graduation rate (completing with advanced degrees). More than half of Ph.D. students and almost 30% of master’s degree students decided to pursue academia as their careers. In addition, we found a high satisfaction rate of AGEP among the participants. Our analysis on graduate student capital helped us identify motivating capital development by years spent at MSU and as an AGEP member. These findings may provide some insight into which capitals may be deemed important for students relative to their experiences at MSU and in AGEP and how their priorities change as they transition toward graduation. 
    more » « less
  2. Abstract

    How do students discover ecology? Answering this question is essential for diversifying the environmental workforce because scientific disciplines, such as ecology, are often not discovered until students enter academia and are exposed to different disciplinary options. Ecology, and many of the environmental sciences, have persistent and alarmingly low numbers of underrepresented minorities (URM; African American, Hispanic American, Native American, and Pacific Islanders), while other science and technology fields have shown progress in diversification. Why does such underrepresentation persist in environmental disciplines? Social factors such as sense of belonging, science identity, implicit biases, and stereotypes all have been explored and are known to influence the participation of URM students in science. The unique role of the field experience in environmental sciences as a “rite of passage” and “authentic” research experience is one important influence on how URM students experience ecology. Interventions using social elements such as belonging and sense of place are demonstrated ways to broaden participation particularly in environmental science fields, yet dramatic underrepresentation still persists. Here we review known factors affecting and enhancing the recruitment and retention of URMs in the sciences and focus on comprehensive strategies shown to be effective recruiting URM students into the environmental workforce.

     
    more » « less
  3. Many high school students learn about nutrient cycling during biology, environmental science, and agriculture classes. These lessons often focus on soil and plants, and nutrient cycling is usually taught independently from climate change. Scientists know that animals, including fish, can have strong effects on nutrient cycling (i.e., nitrogen and phosphorus) in ecosystems. Additionally, research has shown that nitrogen and phosphorus excretion rates of animals increase with water temperatures. We worked with high school students to design and conduct nutrient excretion experiments using common fish (zebrafish) to explore the impact of climate change on nutrient cycling. This allowed students to have hands-on laboratory experience. In 2021, we worked with students participating in a residential summer program in Georgia. Meanwhile, in 2022, students enrolled in the local high school visited the university campus on two occasions to participate in the experiments, and we once again worked with students in Georgia. Students from all three groups showed an increased understanding of the role of animals in nutrient cycling and ways climate change may impact these processes, despite variable results from the excretion experiments. Students also showed increased understanding of science processes and were more likely to feel like part of the science community. We believe that these experiments can be done in high school classrooms to expand students’ understanding of the scientific process, nutrient cycling, and climate change.

     
    more » « less
  4. In this Work in Progress, we present a progress report from the first two years of a five-year Scholarships in STEM program. The number of graduates with computing related degrees from colleges and universities, especially female and underrepresented minorities (URM), is too small to keep up with the fast-growing demand for IT professionals across nation and Tennessee specifically. To reduce the gap in the Tennessee region, our university launched a 5-year S-STEM Scholarship program in 2018 to recruit and graduate more computer science students, especially female and URM. The scholarship program supports about 20 qualified Pell-eligible students every year. Each recipient receives an annual stipend of up to $6000 for no more than three years. In order to increase their interest in computer science and to improve retention of CS majors, a pipeline of well-proven activities were integrated into the program to inspire exploration of the CS discipline and computing careers at an early stage and help students gain work experience before graduation. These activities include, but are not limited to: summer research program that provides opportunities for students to conduct research in different computer science areas, peer-mentoring program that leverages experience and expertise of the group of CS majors who work in the computing field to better prepare scholarship recipients for their careers, and professional conference attendance program that sends students to professional conferences to explore computer science careers and build their own networks. The preliminary data suggest that these activities had a positive effect on our students. We find that the financial support allows students to focus on both academics and searching for computing-related employment. Early analysis of institutional data shows that scholars take more CS credit hours and achieve a higher GPA than other Pell-eligible and non-Pell eligible students, thus making faster progress toward their degree. The support to attend in-person conferences and summer research opportunities had a transformative impact on many participating scholars. The original mentoring program was less effective and has been redesigned to include higher expectations for mentors and mentees and increased faculty involvement. This paper will describe the program elements and explain the effects of these activities on our students with preliminary outcome data and formative evaluation results about the program 
    more » « less
  5. Abstract

    Population growth and climate change will impact food security and potentially exacerbate the environmental toll that agriculture has taken on our planet. These existential concerns demand that a passionate, interdisciplinary, and diverse community of plant science professionals is trained during the 21st century. Furthermore, societal trends that question the importance of science and expert knowledge highlight the need to better communicate the value of rigorous fundamental scientific exploration. Engaging students and the general public in the wonder of plants, and science in general, requires renewed efforts that take advantage of advances in technology and new models of funding and knowledge dissemination. In November 2018, funded by the National Science Foundation through the Arabidopsis Research and Training for the 21st century (ART 21) research coordination network, a symposium and workshop were held that included a diverse panel of students, scientists, educators, and administrators from across the US. The purpose of the workshop was to re‐envision how outreach programs are funded, evaluated, acknowledged, and shared within the plant science community. One key objective was to generate a roadmap for future efforts. We hope that this document will serve as such, by providing a comprehensive resource for students and young faculty interested in developing effective outreach programs. We also anticipate that this document will guide the formation of community partnerships to scale up currently successful outreach programs, and lead to the design of future programs that effectively engage with a more diverse student body and citizenry.

     
    more » « less