skip to main content


Title: Microbial niche differentiation explains nitrite oxidation in marine oxygen minimum zones
Abstract

Nitrite is a pivotal component of the marine nitrogen cycle. The fate of nitrite determines the loss or retention of fixed nitrogen, an essential nutrient for all organisms. Loss occurs via anaerobic nitrite reduction to gases during denitrification and anammox, while retention occurs via nitrite oxidation to nitrate. Nitrite oxidation is usually represented in biogeochemical models by one kinetic parameter and one oxygen threshold, below which nitrite oxidation is set to zero. Here we find that the responses of nitrite oxidation to nitrite and oxygen concentrations vary along a redox gradient in a Pacific Ocean oxygen minimum zone, indicating niche differentiation of nitrite-oxidizing assemblages. Notably, we observe the full inhibition of nitrite oxidation by oxygen addition and nitrite oxidation coupled with nitrogen loss in the absence of oxygen consumption in samples collected from anoxic waters. Nitrite-oxidizing bacteria, including novel clades with high relative abundance in anoxic depths, were also detected in the same samples. Mechanisms corresponding to niche differentiation of nitrite-oxidizing bacteria across the redox gradient are considered. Implementing these mechanisms in biogeochemical models has a significant effect on the estimated fixed nitrogen budget.

 
more » « less
Award ID(s):
1657663
NSF-PAR ID:
10209003
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The ISME Journal
Volume:
15
Issue:
5
ISSN:
1751-7362
Format(s):
Medium: X Size: p. 1317-1329
Size(s):
p. 1317-1329
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nitrite is a central molecule in the nitrogen cycle because nitrite oxidation to nitrate (an aerobic process) retains fixed nitrogen in a system and its reduction to dinitrogen gas (anaerobic) reduces the fixed nitrogen inventory. Despite its acknowledged requirement for oxygen, nitrite oxidation is observed in oxygen-depleted layers of the ocean’s oxygen minimum zones (OMZs), challenging the current understanding of OMZ nitrogen cycling. Previous attempts to determine whether nitrite-oxidizing bacteria in the anoxic layer differ from known nitrite oxidizers in the open ocean were limited by cultivation difficulties and sequencing depth. Here, we construct 31 draft genomes of nitrite-oxidizing bacteria from global OMZs. The distribution of nitrite oxidation rates, abundance and expression of nitrite oxidoreductase genes, and relative abundance of nitrite-oxidizing bacterial draft genomes from the same samples all show peaks in the core of the oxygen-depleted zone (ODZ) and are all highly correlated in depth profiles within the major ocean oxygen minimum zones. The ODZ nitrite oxidizers are not found in the Tara Oceans global dataset (the most complete oxic ocean dataset), and the major nitrite oxidizers found in the oxygenated ocean do not occur in ODZ waters. A pangenomic analysis shows the ODZ nitrite oxidizers have distinct gene clusters compared to oxic nitrite oxidizers and are microaerophilic. These findings all indicate the existence of nitrite oxidizers whose niche is oxygen-deficient seawater. Thus, specialist nitrite-oxidizing bacteria are responsible for fixed nitrogen retention in marine oxygen minimum zones, with implications for control of the ocean’s fixed nitrogen inventory.

     
    more » « less
  2. Abstract

    Fixed nitrogen limits primary productivity in most areas of the surface ocean. Nitrite oxidation is the main source of nitrate, the most abundant form of inorganic fixed nitrogen. Even though known as an aerobic process, nitrite oxidation is not always stimulated by increased oxygen concentration, and nitrite oxidation occurs in layers of oxygen minimum zones (OMZs) where oxygen is not detectable. Nitrite‐oxidizing bacteria, known since their original isolation as aerobes, were also detected in these layers. Whether and how nitrite oxidation is occurring in the anoxic seawater is debated. Here, we reassess recent advances in marine nitrite oxidation in OMZ regions using previous work and new data sets we collected in two Pacific OMZs. We analyze the complex relationship between nitrite oxidation and oxygen. We discuss potential mechanisms explaining nitrite oxidation in different layers of OMZs based on recent findings and propose future directions to resolve the controversial question of apparently anaerobic nitrite oxidation in anoxic layers.

     
    more » « less
  3. Abstract. As a key biogeochemical pathway in the marine nitrogen cycle, nitrification (ammonia oxidation and nitrite oxidation) converts the most reduced form of nitrogen – ammonium–ammonia (NH4+–NH3) – into the oxidized species nitrite (NO2-) and nitrate (NO3-). In the ocean, these processes are mainly performed by ammonia-oxidizing archaea (AOA) and bacteria (AOB) and nitrite-oxidizing bacteria (NOB). By transforming nitrogen speciation and providing substrates for nitrogen removal, nitrification affects microbial community structure; marine productivity (including chemoautotrophic carbon fixation); and the production of a powerful greenhouse gas, nitrous oxide (N2O). Nitrification is hypothesized to be regulated by temperature, oxygen, light, substrate concentration, substrate flux, pH and other environmental factors. Although the number of field observations from various oceanic regions has increased considerably over the last few decades, a global synthesis is lacking, and understanding how environmental factors control nitrification remains elusive. Therefore, we have compiled a database of nitrification rates and nitrifier abundance in the global ocean from published literature and unpublished datasets. This database includes 2393 and 1006 measurements of ammonia oxidation and nitrite oxidation rates and 2242 and 631 quantifications of ammonia oxidizers and nitrite oxidizers, respectively. This community effort confirms and enhances our understanding of the spatial distribution of nitrification and nitrifiers and their corresponding drivers such as the important role of substrate concentration in controlling nitrification rates and nitrifier abundance. Some conundrums are also revealed, including the inconsistent observations of light limitation and high rates of nitrite oxidation reported from anoxic waters. This database can be used to constrain the distribution of marine nitrification, to evaluate and improve biogeochemical models of nitrification, and to quantify the impact of nitrification on ecosystem functions like marine productivity and N2O production. This database additionally sets a baseline for comparison with future observations and guides future exploration (e.g., measurements in the poorly sampled regions such as the Indian Ocean and method comparison and/or standardization). The database is publicly available at the Zenodo repository: https://doi.org/10.5281/zenodo.8355912 (Tang et al., 2023).

     
    more » « less
  4. Spear, John R. (Ed.)
    ABSTRACT Bacteria specialized in anaerobic ammonium oxidation (anammox) are widespread in many anoxic habitats and form an important functional guild in the global nitrogen cycle by consuming bio-available nitrogen for energy rather than biomass production. Due to their slow growth rates, cultivation-independent approaches have been used to decipher their diversity across environments. However, their full diversity has not been well recognized. Here, we report a new family of putative anammox bacteria, “ Candidatus Subterrananammoxibiaceae,” existing in the globally distributed terrestrial and marine subsurface (groundwater and sediments of estuary, deep-sea, and hadal trenches). We recovered a high-quality metagenome-assembled genome of this family, tentatively named “ Candidatus Subterrananammoxibius californiae,” from a California groundwater site. The “ Ca. Subterrananammoxibius californiae” genome not only contains genes for all essential components of anammox metabolism (e.g., hydrazine synthase, hydrazine oxidoreductase, nitrite reductase, and nitrite oxidoreductase) but also has the capacity for urea hydrolysis. In an Arctic ridge sediment core where redox zonation is well resolved, “ Ca. Subterrananammoxibiaceae” is confined within the nitrate-ammonium transition zone where the anammox rate maximum occurs, providing environmental proof of the anammox activity of this new family. Phylogenetic analysis of nitrite oxidoreductase suggests that a horizontal transfer facilitated the spreading of the nitrite oxidation capacity between anammox bacteria (in the Planctomycetota phylum) and nitrite-oxidizing bacteria from Nitrospirota and Nitrospinota . By recognizing this new anammox family, we propose that all lineages within the “ Ca. Brocadiales” order have anammox capacity. IMPORTANCE Microorganisms called anammox bacteria are efficient in removing bioavailable nitrogen from many natural and human-made environments. They exist in almost every anoxic habitat where both ammonium and nitrate/nitrite are present. However, only a few anammox bacteria have been cultured in laboratory settings, and their full phylogenetic diversity has not been recognized. Here, we present a new bacterial family whose members are present across both the terrestrial and marine subsurface. By reconstructing a high-quality genome from the groundwater environment, we demonstrate that this family has all critical enzymes of anammox metabolism and, notably, also urea utilization. This bacterium family in marine sediments is also preferably present in the niche where the anammox process occurs. These findings suggest that this novel family, named “ Candidatus Subterrananammoxibiaceae,” is an overlooked group of anammox bacteria, which should have impacts on nitrogen cycling in a range of environments. 
    more » « less
  5. null (Ed.)
    The Eastern Tropical North Pacific (ETNP) is a large, persistent, and intensifying oxygen minimum zone (OMZ) that accounts for almost half of the total area of global OMZs. Within the OMZ core (350–700 m depth), dissolved oxygen is typically near or below the analytical detection limit of modern sensors (10 nM). Steep oxygen gradients above and below the OMZ core lead to vertical structuring of microbial communities that also vary between particle-associated (PA) and free-living (FL) size fractions. Here, we use 16S amplicon sequencing (iTags) to analyze the diversity and distribution of prokaryotic populations between FL and PA size fractions and among the range of ambient redox conditions. The hydrographic conditions at our study area were distinct from those previously reported in the ETNP and other OMZs, such as the ETSP. Trace oxygen concentrations (0.35 mM) were present throughout the OMZ core at our sampling location. Consequently, nitrite accumulations typically reported for OMZ cores were absent as were sequences for anammox bacteria (Brocadiales genus Candidatus Scalindua), which are commonly found across oxic-anoxic boundaries in other systems. However, ammonia-oxidizing bacteria (AOB) and archaea (AOA) distributions and maximal autotrophic carbon assimilation rates (1.4 mM C d􀀀1) coincided with a pronounced ammonium concentration maximum near the top of the OMZ core. In addition, members of the genus Nitrospina, a dominant nitrite-oxidizing bacterial (NOB) clade were present suggesting that both ammonia and nitrite oxidation occur at trace oxygen concentrations. Analysis of similarity test (ANOSIM) and Non-metric Dimensional Scaling (nMDS) revealed that bacterial and archaeal phylogenetic representations were significantly different between size fractions. Based on ANOSIM and iTag profiles, composition of PA assemblages was less influenced by the prevailing depth-dependent biogeochemical regime than the FL fraction. Based on the presence of AOA, NOB and trace oxygen in the OMZ core we suggest that nitrification is an active process in the nitrogen cycle of this region of the ETNP OMZ. 
    more » « less