skip to main content


Title: A Castro Consensus: Understanding the Role of Dependence in Consensus Formation
Consensus is viewed as a proxy for truth in many discussions of science. When a consensus is formed by the independent and free deliberations of many, it is indeed a strong indicator of truth. Yet not all consensuses are independent and freely formed. We investigate the role of dependence and pressure in the formation of consensus, showing that strong polarization, external pressure, and dependence among individuals can force consensus around an issue, regardless of the underlying truth of the affirmed position. Dependence breaks consensus, often rendering it meaningless; a consensus can only be trusted to the extent that individuals are free to disagree with it.  more » « less
Award ID(s):
1950885
NSF-PAR ID:
10209106
Author(s) / Creator(s):
; ;
Editor(s):
De Cristofaro, E; Nakov, P
Date Published:
Journal Name:
Proceedings of the 2020 Truth and Trust Online Conference (TTO 2020), Virtual, October 15-17, 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Flow in the inverted U-shaped tube of a conventional siphon can be established and maintained only if the tube is filled and closed, so that air does not enter. We report on siphons that operate entirely open to the atmosphere by exploiting surface tension effects. Such capillary siphoning is demonstrated by paper tissue that bridges two containers and conveys water from the upper to the lower. We introduce a more controlled system consisting of grooves in a wetting solid, formed here by pressing together hook-shaped metallic rods. The dependence of flux on siphon geometry is systematically measured, revealing behaviour different from the conventional siphon. The flux saturates when the height difference between the two container's free surfaces is large; it also has a strong dependence on the climbing height from the source container's free surface to the apex. A one-dimensional theoretical model is developed, taking into account the capillary pressure due to surface tension, pressure loss due to viscous friction, and driving by gravity. Numerical solutions are in good agreement with experiments, and the model suggests hydraulic interpretations for the observed flux dependence on geometrical parameters. The operating principle and characteristics of capillary siphoning revealed here can inform biological phenomena and engineering applications related to directional fluid transport. 
    more » « less
  2. Abstract The identification of orthologs—genes in different species which descended from the same gene in their last common ancestor—is a prerequisite for many analyses in comparative genomics and molecular evolution. Numerous algorithms and resources have been conceived to address this problem, but benchmarking and interpreting them is fraught with difficulties (need to compare them on a common input dataset, absence of ground truth, computational cost of calling orthologs). To address this, the Quest for Orthologs consortium maintains a reference set of proteomes and provides a web server for continuous orthology benchmarking (http://orthology.benchmarkservice.org). Furthermore, consensus ortholog calls derived from public benchmark submissions are provided on the Alliance of Genome Resources website, the joint portal of NIH-funded model organism databases. 
    more » « less
  3. null (Ed.)
    In this paper, the small-signal model and stability-oriented consensus control scheme for inverter-based microgrid systems is proposed. By perturbating four identified dominant control parameters of inverter-based microgrid intentionally, the corresponding incremental matrix of microgrid system can be formed. Then, Matrix Perturbation Theory is employed in this paper to reduce the computational burden caused by repetitive calculations of system eigenvalues during stability analysis. Furthermore, the objective function is formulated based on the small-signal stability index and consensus index of microgrid system. Finally, the optimal control algorithm based on the joint application of Matrix Perturbation Theory and Artificial Fish Swarm Algorithm is introduced in this paper so that the stability and consensus rate of microgrid can be ensured. Besides, the effectiveness of proposed method can be verified in Matlab/Simulation results. 
    more » « less
  4. Opportunistic Physics-mining Transfer Mapping Architecture (OPTMA) is a hybrid architecture that combines fast simplified physics models with neural networks in order to provide significantly improved generalizability and explainability compared to pure data-driven machine learning (ML) models. However, training OPTMA remains computationally inefficient due to its dependence on gradient-free solvers or back-propagation with supervised learning over expensively pre-generated labels. This paper presents two extensions of OPTMA that are not only more efficient to train through standard back-propagation but are readily deployable through the state-of-the-art library, PyTorch. The first extension, OPTMA-Net, presents novel manual reprogramming of the simplified physics model, expressing it in Torch tensor compatible form, thus naturally enabling PyTorch's in-built Auto-Differentiation to be used for training. Since manual reprogramming can be tedious for some physics models, a second extension called OPTMA-Dual is presented, where a highly accurate internal neural net is trained apriori on the fast simplified physics model (which can be generously sampled), and integrated with the transfer model. Both new architectures are tested on analytical test problems and the problem of predicting the acoustic field of an unmanned aerial vehicle. The interference of the acoustic pressure waves produced by multiple monopoles form the basis of the simplified physics for this problem statement. An indoor noise monitoring setup in motion capture environment provided the ground truth for target data. Compared to sequential hybrid and pure ML models, OPTMA-Net/Dual demonstrate several fold improvement in performing extrapolation, while providing orders of magnitude faster training times compared to the original OPTMA. 
    more » « less
  5. Soft robots actuate themselves and their world through induced pressure and strain, and can often sense these quantities as well. We hypothesize that coordination in a tightly coupled collective of soft robots can be achieved with purely proprioceptive sensing and no direct communication. In this paper, we target a platform of soft pneumatic modules capable of sensing strain on their perimeter, with the goal of using only the robots' own soft actuators and sensors as a medium for distributed coordination. However, methods for modelling, sensing, and controlling strain in such soft robot collectives are not well understood. To address this challenge, we introduce and validate a computationally efficient spring-based model for two-dimensional sheets of soft pneumatic robots. We then translate a classical consensus algorithm to use only proprioceptive data, test in simulation, and show that due to the physical coupling between robots we can achieve consensus-like coordination. We discuss the unique challenges of strain sensors and next steps to bringing these findings to hardware. These findings have promising potential for smart materials and large-scale collectives, because they omit the need for additional communication infrastructure to support coordination. 
    more » « less