Engineering undergraduates are exposed to a variety of writing curricula, such as first-year-composition courses, in their early program of study; however, they have difficulties meeting the expectations of writing in early engineering courses. On the other hand, instructors in entry-level engineering lab courses struggle to instruct lab report writing due to a wide range of student writing backgrounds and pressure to focus on technical content. When using the lens of learning transfer theories, which describe the processes and the effective extent to which past experiences affect learning and performance in a new situation, we can classify engineering students in three writing transfer modes: 1) concurrent transfer, which occurs when a rhetorically-focused technical writing class is taken concurrently or prior to engineering labs in the major; 2) vertical transfer, which occurs when a rhetorically-focused general education writing class is taken prior to engineering labs in the major; and 3) absent transfer, which occurs when no rhetorically-focused writing class exists (rather literature-focused) or writing-intensive courses are not required in the general education curriculum. This study aims to investigate how the engineering sophomore’s past writing experience, specifically in collegiate writing or writing-across-the-curriculum courses, affects their engineering lab report writing. Lab reports from four sophomore engineering courses (1 civil, 2 electrical, 1 general engineering) across three institutions collected for analysis consisted of two sets: the sample sets in early labs (for example, Lab 1) and in later labs (for example, the last lab) of the courses. A total of 46 reports (22 early and 24 later) were collected from 22 engineering sophomores during AY2019-2020. Four engineering faculty (1 civil, 1 electrical, and 2 mechanical engineering) developed a rubric based on lab report writing student outcomes, which are aligned with the existing outcomes such as ABET outcomes and the student outcomes from the Council of Writing Program Administrators (WPA). The data suggest that the greatest writing gains in a first lab course are made by vertical transfer students, while concurrent transfer students enter with skills developed in prior writing coursework. The largest improvements among the three transfer modes were found in the student outcomes related to lab data presentation, analysis, and interpretation. In these outcomes, the concurrent transfer students had relatively high scores for both early and later reports, while the vertical transfer students improved their scores from relatively low in early reports to meet expectations in later reports. Absent transfer students demonstrated inconsistent outcomes and deserve greater study with more data than was available for this study.
more »
« less
Preliminary Feedback on Learning in Advance Courses to Prepare Engineering Students for Gateway Courses
The University of Alabama is exploring Learning in Advance (LIA) courses to introduce engineering students to concepts and correct common misconceptions prior to encountering the complex theories and concepts in three different gateway courses. These gateway courses are circuit analysis, statics, and data-structures/algorithms. The courses were identified based on analysis of institutional data. Data indicated that greater than 90% of UA students who succeed in the three courses went on to complete their undergraduate degree. Yet, each course has individually high rates of failure and/or withdrawals. The objective and intended learning outcomes of each of the three courses is to provide students with knowledge of key concepts that will strengthen the student’s critical thinking skills and establish a strong technical foundation. In this work an overview of the LIA courses is provided along with summaries of collected student feedback and the plans for future assessment to track the effectiveness of this intervention to improve student outcomes in the gateway courses.
more »
« less
- Award ID(s):
- 1642508
- PAR ID:
- 10209107
- Date Published:
- Journal Name:
- ASEE Southeastern Section Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Engineering undergraduates are exposed to a variety of writing curricula, such as first-year-composition courses, in their early program of study; however, they have difficulties meeting the expectations of writing in early engineering courses. On the other hand, instructors in entry-level engineering lab courses struggle to instruct lab report writing due to a wide range of student background in writing. When using the lens of learning transfer theories, which describe the processes and the effective extent to which past experiences affect learning and performance in a new situation, we can classify engineering students in three writing transfer modes: 1) concurrent transfer, which occurs when a rhetorically-focused technical writing class is taken concurrently or prior to engineering labs in the major; 2) vertical transfer, which occurs when a rhetorically-focused general education writing class is taken prior to engineering labs in the major; and 3) absent transfer, which occurs when no rhetorically-focused writing class exists (rather literature-focused) or writing-intensive courses are not required in the general education curriculum. This study aims to investigate how the engineering sophomore’s past writing experience affects their engineering lab report writing. Lab reports from four sophomore engineering courses (1 civil, 2 electrical, 1 general engineering) across three institutions collected for analysis consisted of two sets: the sample sets in early labs (for example, Lab 1) and in later labs (for example, the last lab) of the courses. A total of 46 reports (22 early and 24 later) were collected from 22 engineering sophomores during AY2019-2020. Four engineering faculty (1 civil, 1 electrical, and 2 mechanical engineering) developed a rubric based on lab report writing student outcomes, which are aligned with the existing outcomes such as ABET outcomes and the student outcomes from the Council of Writing Program Administrators (WPA). Data collected via early-later lab reports show that student outcomes related to writing conventions were scored high regardless of the transfer modes. The largest variations among three transfer modes were found in the student outcomes related to lab data presentation, analysis, and interpretation. In these outcomes, the concurrent transfer students had relatively high scores for both early and later reports, while the vertical transfer students improved their scores from relatively low in early reports to high in later reports. This research results show that the area of writing knowledge that has been most influenced by their writing curricula prior to sophomore engineering lab courses is disciplinary meaning-making through presenting, analyzing, and interpreting lab data for the technical audience.more » « less
-
This project supports the success of undergraduate engineering students through coordinated design of curricula across STEM course sequences. The Analysis, Design, Development, Implementation, Evaluation (ADDIE) framework and backward design are being used to develop guides for instructors to align learning outcomes, assessments, and instructional materials in a physics – engineering mechanics course sequence. The approach relies on the analysis of student learning outcomes in each course, identification of interdependent learning outcomes, and development of skills hierarchies in the form of visual learning maps. The learning maps are used to illustrate the knowledge required and built upon throughout the course sequence. This study will assess the effectiveness of a course redesign intervention, which uses visual learning maps and backward design concepts, to guide instructors within a common course sequence to align learning outcomes and assessments. If successful, the intervention is expected to improve students’ primary learning and knowledge retention, as well as persistence and success in the degree. The study will compare academic performance among Mechanical Engineering B.S., Environmental Engineering B.S., and Civil Engineering B.S. students who begin a Physics for Engineers – Statics – Dynamics course prior to the intervention (control) and after the intervention (treatment). During control and treatment terms, students’ primary learning in individual courses will be assessed using established concept inventories. Retention of knowledge from pre-requisite courses will be tracked using pre-identified problem sets (quizzes, exams) specifically associated with interdependent learning outcomes in the Statics and Dynamics courses. Students’ primary learning and knowledge retention in the sequence will be related to longer term student success outcomes, including retention and graduation. The poster will show the results of the research team’s first year of work, including an analysis of current course materials, learning maps for each course, identification of interdependent learning outcomes, example guiding materials and templates for instructors, and preliminary student performance data from the control cohort.more » « less
-
This theory paper focuses on understanding how mastery learning has been implemented in undergraduate engineering courses through a systematic review. Academic environments that promote learning, mastery, and continuous improvement rather than inherent ability can promote performance and persistence. Scholarship has argued that students could achieve mastery of the course material when the time available to master concepts and the quality of instruction was made appropriate to each learner. Increasing time to demonstrate mastery involves a course structure that allows for repeated attempts on learning assessments (i.e., homework, quizzes, projects, exams). Students are not penalized for failed attempts but are rewarded for achieving eventual mastery. The mastery learning approach recognizes that mastery is not always achieved on first attempts and learning from mistakes and persisting is fundamental to how we learn. This singular concept has potentially the greatest impact on students’ mindset in terms of their belief they can be successful in learning the course material. A significant amount of attention has been given to mastery learning courses in secondary education and mastery learning has shown an exceptionally positive effect on student achievement. However, implementing mastery learning in an undergraduate course can be a cumbersome process as it requires instructors to significantly restructure their assignments and exams, evaluation process, and grading practices. In light of these challenges, it is unclear the extent to which mastery learning has been implemented in undergraduate engineering courses or if similar positive effects can be found. Therefore, we conducted a systematic review to elucidate, how in the U.S., (1) has mastery learning been implemented in undergraduate engineering courses from 1990 to the present time and (2) the student outcomes that have been reported for these implementations. Using the systematic process outlined by Borrego et al. (2014), we surveyed seven databases and a total of 584 articles consisting of engineering and non-engineering courses were identified. We focused our review on studies that were centered on applying the mastery learning pedagogical method in undergraduate engineering courses. All peer-reviewed and practitioner articles and conference proceedings that were within our scope were included in the synthetization phase of the review. Most articles were excluded based on our inclusion and exclusion criteria. Twelve studies focused on applying mastery learning to undergraduate engineering courses. The mastery learning method was mainly applied on midterm exams, few studies used the method on homework assignments, and no study applied the method to the final exam. Students reported an increase in learning as a result of applying mastery learning. Several studies reported that students’ grades in a traditional final exam were not affected by mastery learning. Students’ self-reported evaluation of the course suggests that students prefer the mastery learning approach over traditional methods. Although a clear consensus on the effect of the mastery learning approach could not be achieved as each article applied different survey instruments to capture students’ perspectives. Responses to open-ended questions have mixed results. Two studies report more positive student comments on opened-ended questions, while one study report receiving more negative comments regarding the implementation of the mastery learning method. In the full paper we more thoroughly describe the ways in which mastery learning was implemented along with clear examples of common and divergent student outcomes across the twelve studies.more » « less
-
Student experiences learning chemistry have been well studied in chemistry courses but less so in biology courses. Chemistry concepts are foundational to introductory biology courses, and student experiences learning chemistry concepts may impact their overall course experiences and subsequent student outcomes. In this study, we asked undergraduate students enrolled in introductory biology courses at a public R1 institution an open-response question asking how their experiences learning chemistry topics affected their identities as biologists. We used thematic analysis to identify common ideas in their responses. We found that while almost half of student respondents cited learning chemistry as having positive impacts on their experiences learning biology, students who struggled with chemistry topics were significantly more likely to have negative experiences learning biology. We also found significant relationships between prior chemistry preparation, student background, and the likelihood of students struggling with chemistry and negative experiences learning biology. These findings emphasize the impact of learning specific content on student psychosocial metrics and suggest areas for biology educators to focus on to support learning and alleviate student stress in introductory biology.more » « less
An official website of the United States government

