skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis
Plant roots and animal guts have evolved specialized cell layers to control mineral nutrient homeostasis. These layers must tolerate the resident microbiota while keeping homeostatic integrity. Whether and how the root diffusion barriers in the endodermis, which are critical for the mineral nutrient balance of plants, coordinate with the microbiota is unknown. We demonstrate that genes controlling endodermal function in the model plantArabidopsis thalianacontribute to the plant microbiome assembly. We characterized a regulatory mechanism of endodermal differentiation driven by the microbiota with profound effects on nutrient homeostasis. Furthermore, we demonstrate that this mechanism is linked to the microbiota’s capacity to repress responses to the phytohormone abscisic acid in the root. Our findings establish the endodermis as a regulatory hub coordinating microbiota assembly and homeostatic mechanisms.  more » « less
Award ID(s):
1917270
PAR ID:
10209132
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
371
Issue:
6525
ISSN:
0036-8075
Page Range / eLocation ID:
Article No. eabd0695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Multicellular organisms control environmental interactions through specialized barriers in specific cell types. A conserved barrier in plant roots is the endodermal Casparian strip (CS), a ring-like structure made of polymerized lignin that seals the endodermal apoplastic space. Most angiosperms have another root cell type, the exodermis, that is reported to form a barrier. Our understanding of exodermal developmental and molecular regulation and function is limited as this cell type is absent fromArabidopsis thaliana. We demonstrate that in tomato (Solanum lycopersicum), the exodermis does not form a CS. Instead, it forms a polar lignin cap (PLC) with equivalent barrier function to the endodermal CS but distinct genetic control. Repression of the exodermal PLC in inner cortical layers is conferred by theSlSCZandSlEXO1transcription factors, and these two factors genetically interact to control its polar deposition. Several target genes that act downstream ofSlSCZandSlEXO1in the exodermis are identified. Although the exodermis and endodermis produce barriers that restrict mineral ion uptake, the exodermal PLC is unable to fully compensate for the lack of a CS. The presence of distinct lignin structures acting as apoplastic barriers has exciting implications for a root’s response to abiotic and biotic stimuli. 
    more » « less
  2. Plant roots integrate environmental signals with development using exquisite spatiotemporal control. This is apparent in the deposition of suberin, an apoplastic diffusion barrier, which regulates flow of water, solutes and gases, and is environmentally plastic. Suberin is considered a hallmark of endodermal differentiation but is absent in the tomato endodermis. Instead, suberin is present in the exodermis, a cell type that is absent in the model organismArabidopsis thaliana. Here we demonstrate that the suberin regulatory network has the same parts driving suberin production in the tomato exodermis and theArabidopsisendodermis. Despite this co-option of network components, the network has undergone rewiring to drive distinct spatial expression and with distinct contributions of specific genes. Functional genetic analyses of the tomato MYB92 transcription factor and ASFT enzyme demonstrate the importance of exodermal suberin for a plant water-deficit response and that the exodermal barrier serves an equivalent function to that of the endodermis and can act in its place. 
    more » « less
  3. Abstract Oriented cell divisions establish plant tissue and organ patterning and produce different cell types; this is particularly true of the highly organized Arabidopsis (Arabidopsis thaliana) root meristem. Mutant alleles of INFLORESCENCE AND ROOT APICES RECEPTOR KINASE (IRK) exhibit excess cell divisions in the root endodermis. IRK is a transmembrane receptor kinase that localizes to the outer polar domain of these cells, suggesting that directional signal perception is necessary to repress endodermal cell division. Here, a detailed examination revealed many of the excess endodermal divisions in irk have division planes that specifically skew toward the outer lateral side. Therefore, we termed them “outward askew” divisions. Expression of an IRK truncation lacking the kinase domain retains polar localization and prevents outward askew divisions in irk; however, the roots exhibit excess periclinal endodermal divisions. Using cell identity markers, we show that the daughters of outward askew divisions transition from endodermal to cortical identity similar to those of periclinal divisions. These results extend the requirement for IRK beyond repression of cell division activity to include cell division plane positioning. Based on its polarity, we propose that IRK at the outer lateral endodermal cell face participates in division plane positioning to ensure normal root ground tissue patterning. 
    more » « less
  4. Nitrate is a nutrient and a potent signal that impacts global gene expression in plants. However, the regulatory factors controlling temporal and cell type–specific nitrate responses remain largely unknown. We assayed nitrate-responsive transcriptome changes in five major root cell types of the Arabidopsis thaliana root as a function of time. We found that gene-expression response to nitrate is dynamic and highly localized and predicted cell type–specific transcription factor (TF)–target interactions. Among cell types, the endodermis stands out as having the largest and most connected nitrate-regulatory gene network. ABF2 and ABF3 are major hubs for transcriptional responses in the endodermis cell layer. We experimentally validated TF–target interactions for ABF2 and ABF3 by chromatin immunoprecipitation followed by sequencing and a cell-based system to detect TF regulation genome-wide. Validated targets of ABF2 and ABF3 account for more than 50% of the nitrate-responsive transcriptome in the endodermis. Moreover, ABF2 and ABF3 are involved in nitrate-induced lateral root growth. Our approach offers an unprecedented spatiotemporal resolution of the root response to nitrate and identifies important components of cell-specific gene regulatory networks. 
    more » « less
  5. Abstract In plants, cell polarity plays key roles in coordinating developmental processes. Despite the characterization of several polarly localized plasma membrane proteins, the mechanisms connecting protein dynamics with cellular functions often remain unclear. Here, we introduce a polarized receptor, KOIN, that restricts cell divisions in the Arabidopsis root meristem. In the endodermis, KOIN polarity is opposite to IRK, a receptor that represses endodermal cell divisions. Their contra-polar localization facilitates dissection of polarity mechanisms and the links between polarity and function. We find that IRK and KOIN are recognized, sorted, and secreted through distinct pathways. IRK extracellular domains determine its polarity and partially rescue the mutant phenotype, whereas KOIN’s extracellular domains are insufficient for polar sorting and function. Endodermal expression of an IRK/KOIN chimera generates non-cell-autonomous misregulation of root cell divisions that impacts patterning. Altogether, we reveal two contrasting mechanisms determining these receptors’ polarity and link their polarity to cell divisions in root tissue patterning. 
    more » « less