skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nonlinear polarization transfer and control of two laser beams overlapping in a uniform nonlinear medium
A scheme for polarization control using two laser beams in a non-linear optical medium is studied using both co- and counter-propagating beam geometries. In particular, we show that under certain conditions it is possible for two laser beams to exchange their polarization states. A model accounting for a more realistic, 2D propagation geometry is presented. The 2D model produces drastically different results (compared to the 1D propagation geometry), creating difficulties for implementing polarization control in a realistic setting. A proposal for overcoming these difficulties by reducing the non-linear optical medium to a thin slab is presented.  more » « less
Award ID(s):
1803874
PAR ID:
10209140
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
29
Issue:
2
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 1162
Size(s):
Article No. 1162
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We demonstrate a new practical approach for generating multicolour spiral-shaped beams. It makes use of a standard silica optical fibre, combined with a tilted input laser beam. The resulting breaking of the fibre axial symmetry leads to the propagation of a helical beam. The associated output far-field has a spiral shape, independently of the input laser power value. Whereas, with a high-power near-infrared femtosecond laser, a visible supercontinuum spiral emission is generated. With appropriate control of the input laser coupling conditions, the colours of the spiral spatially self-organize in a rainbow distribution. Our method is independent of the laser source wavelength and polarization. Therefore, standard optical fibres may be used for generating spiral beams in many applications, ranging from communications to optical tweezers and quantum optics. 
    more » « less
  2. Spin–orbit coupling splits the exciton resonances of two-dimensional organic–inorganic hybrid perovskites (2D-OIHPs) into an optically active fine structure. Although circularly polarized light can induce macroscopic spin polarizations in ensembles of quantum wells, the orientations of the angular momentum vectors associated with individual excitons generally randomize on sub-picosecond timescales in 2D-OIHPs with single lead-iodide layers. In the present work, we investigate the nonlinear optical signatures of spin depolarization in 2D-OIHP materials with various organic layer thicknesses and polaron binding energies. Transient absorption experiments conducted using circularly polarized laser pulses establish time constants for spin equilibration ranging from 65 to 110 fs in the targeted systems. In addition, with inspiration from time-resolved Faraday rotation spectroscopies, we introduce a transient grating method in which spin relaxation promotes an elliptical-to-linear transformation of the signal field polarization. Spectroscopic signatures for all experiments are simulated with a common third-order perturbative model that incorporates orientationally averaged transition dipoles and the polarizations of the laser pulses. Spectroscopic line broadening parameters obtained for the 2D-OIHP systems are considered in the context of a rate formula for spin relaxation, wherein the spin–orbit coupling is combined with a cumulant expansion for fluctuations of the energy levels. Our analysis suggests that the insensitivity of the measured spin relaxation rates to the polaron binding energies of 2D-OIHPs reflects the suppression of an activation energy barrier due to motional narrowing. Model calculations conducted with empirical parameters indicate that motional narrowing of the spin relaxation processes originates in correlated thermal fluctuations of the energy levels comprising the exciton fine structure. 
    more » « less
  3. Optical control of magnons in two-dimensional (2D) materials promises new functionalities for spintronics and magnonics in atomically thin devices. Here, we report control of magnon dynamics, using laser polarization, in a ferromagnetic van der Waals (vdW) material, Fe3.6Co1.4GeTe2. The magnon amplitude, frequency, and lifetime are controlled and monitored by time-resolved pump-probe spectroscopy. We show substantial (over 25%) and continuous modulation of magnon dynamics as a function of incident laser polarization. Our results suggest that the modification of the effective demagnetization field and magnetic anisotropy by the pump laser pulses with different polarizations is due to anisotropic optical absorption. This implies that pump laser pulses modify the local spin environment, which enables the launch of magnons with tunable dynamics. Our first-principles calculations confirm the anisotropic optical absorption of different crystal orientations. Our findings suggest a new route for the development of opto-spintronic or opto-magnonic devices. 
    more » « less
  4. null (Ed.)
    Abstract Two-dimensional (2D) material of silicon phosphide (SiP) has recently been shown as a promising optical material with large band gap, fast photoresponse and strong anisotropy. However, the nonlinear optical properties of 2D SiP have not been investigated yet. Here, the thickness-dependent in-plane anisotropic third-harmonic generation (THG) from the mechanically exfoliated 2D layered SiP flakes is reported. The crystal orientation of the SiP flake is determined by the angle-resolved polarized Raman spectroscopy. The angular dependence of the THG emission with respect to the incident linear polarization is found to be strongly anisotropic with the two-fold polarization dependence pattern. Furthermore, the effect of the SiP flake thickness on the THG power is analyzed. 
    more » « less
  5. Abstract Stable laser resonators support three fundamental families of transverse modes: the Hermite, Laguerre, and Ince Gaussian modes. These modes are crucial for understanding complex resonators, beam propagation, and structured light. We experimentally observe a new family of fundamental laser modes in stable resonators: Boyer-Wolf Gaussian modes. By studying the isomorphism between laser cavities and quadratic Hamiltonians, we design a laser resonator equivalent to a quantum two-dimensional anisotropic harmonic oscillator with a 2:1 frequency ratio. The generated Boyer-Wolf Gaussian modes exhibit a parabolic structure and show remarkable agreement with our theoretical predictions. These modes are also eigenmodes of a 2:1 anisotropic gradient refractive index medium, suggesting their presence in any physical system with a 2:1 anisotropic quadratic potential. We identify a transition connecting Boyer-Wolf Gaussian modes to Weber nondiffractive parabolic beams. These new modes are foundational for structured light, and open exciting possibilities for applications in laser micromachining, particle micromanipulation, and optical communications. 
    more » « less