Monodispersed angstrom-size pores embedded in a suitable matrix are promising for highly selective membrane-based separations. They can provide substantial energy savings in water treatment and small molecule bioseparations. Such pores present as membrane proteins (chiefly aquaporin-based) are commonplace in biological membranes but difficult to implement in synthetic industrial membranes and have modest selectivity without tunable selectivity. Here we present PoreDesigner, a design workflow to redesign the robust beta-barrel Outer Membrane Protein F as a scaffold to access three specific pore designs that exclude solutes larger than sucrose (>360 Da), glucose (>180 Da), and salt (>58 Da) respectively. PoreDesigner also enables us to design any specified pore size (spanning 3–10 Å), engineer its pore profile, and chemistry. These redesigned pores may be ideal for conducting sub-nm aqueous separations with permeabilities exceeding those of classical biological water channels, aquaporins, by more than an order of magnitude at over 10 billion water molecules per channel per second.
Molecular sieving may occur when two molecules compete for a nanopore. In nearly all known examples, the nanopore is larger than the molecule that selectively enters the pore. Here, we experimentally demonstrate the ability of single-wall carbon nanotubes with a van der Waals pore size of 0.42 nm to separate n-hexane from cyclohexane—despite the fact that both molecules have kinetic diameters larger than the rigid nanopore. This unexpected finding challenges our current understanding of nanopore selectivity and how molecules may enter a tight channel. Ab initio molecular dynamics simulations reveal that n-hexane molecules stretch by nearly 11.2% inside the nanotube pore. Although at a relatively low probability (28.5% overall), the stretched state of n-hexane does exist in the bulk solution, allowing the molecule to enter the tight pore even at room temperature. These insights open up opportunities to engineer nanopore selectivity based on the molecular degrees of freedom.
more » « less- NSF-PAR ID:
- 10209559
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract A nanopore device is capable of providing single‐molecule level information of an analyte as they translocate through the sensing aperture—a nanometer‐sized through‐hole—under the influence of an applied electric field. In this study, a silicon nitride (Si
x Ny )‐based nanopore was used to characterize the human serum transferrin receptor protein (TfR) under various applied voltages. The presence of dimeric forms of TfR was found to decrease exponentially as the applied electric field increased. Further analysis of monomeric TfR also revealed that its unfolding behaviors were positively dependent on the applied voltage. Furthermore, a comparison between the data of monomeric TfR and its ligand protein, human serum transferrin (hSTf), showed that these two protein populations, despite their nearly identical molecular weights, could be distinguished from each other by means of a solid‐state nanopore (SSN). Lastly, the excluded volumes of TfR were experimentally determined at each voltage and were found to be within error of their theoretical values. The results herein demonstrate the successful application of an SSN for accurately classifying monomeric and dimeric molecules while the two populations coexist in a heterogeneous mixture. -
Abstract Direct synthesis of graphene with well‐defined nanoscale pores over large areas can transform the fabrication of nanoporous atomically thin membranes (NATMs) and greatly enhance their potential for practical applications. However, scalable bottom‐up synthesis of continuous sheets of nanoporous graphene that maintain integrity over large areas has not been demonstrated. Here, it is shown that a simple reduction in temperature during chemical vapor deposition (CVD) on Cu induces in‐situ formation of nanoscale defects (≤2–3 nm) in the graphene lattice, enabling direct and scalable synthesis of nanoporous monolayer graphene. By solution‐casting of hierarchically porous polyether sulfone supports on the as‐grown nanoporous CVD graphene, large‐area (>5 cm2) NATMs for dialysis applications are demonstrated. The synthesized NATMs show size‐selective diffusive transport and effective separation of small molecules and salts from a model protein, with ≈2–100× increase in permeance along with selectivity better than or comparable to state‐of‐the‐art commercially available polymeric dialysis membranes. The membranes constitute the largest fully functional NATMs fabricated via bottom‐up nanopore formation, and can be easily scaled up to larger sizes permitted by CVD synthesis. The results highlight synergistic benefits in blending traditional membrane casting with bottom‐up pore creation during graphene CVD for advancing NATMs toward practical applications.
-
Abstract In this review, recent research efforts that aimed at developing nanopore sensors for detection of metal ions, which play a crucial role in environmental safety and human health, are highlighted. Protein pores use three stochastic sensing‐based strategies for metal ion detection. The first strategy is to construct engineered nanopores with metal ion binding sites, so that the interaction between the target analytes and the nanopore can slow the movement of metal ions in the nanochannel. Second, large molecules such as nucleic acids and especially peptides can be utilized as external selective molecular probes to detect metal ions based on the conformational change of the ligand molecules induced by the metal ion–ligand chelation/coordination interaction. Third, enzymatic reactions can also be used as an alternative to the molecule probe strategy in the situation that a sensitive and selective probe molecule for the target analyte is difficult to obtain. On the other hand, by taking advantage of steady‐state analysis, synthetic nanopores mainly use two strategies (modification and modification‐free) to detect metals. Given the advantages of high sensitivity and selectivity, and label‐free detection, nanopore‐based metal ion sensors should find useful application in many fields, including environmental monitoring, medical diagnosis, and so on.
-
Abstract A porous molecular crystal (PMC) assembled by macrocyclic cyclotetrabenzoin acetate is an efficient adsorbent for CO2separations. The 7.1×7.1 Å square pore of PMC and its ester C=O groups play important roles in improving its affinity for CO2molecules. The benzene walls of macrocycle engage in an apparent [π⋅⋅⋅π] interaction with the molecule of CO2at low pressure. In addition, the polar carbonyl groups pointing inward the square channels reduce the size of aperture to a 5.0×5.0 Å square, which offers kinetic selectivity for CO2capture. The PMC features water tolerance and high structural stability under vacuum and various gas adsorption conditions, which are rare among intrinsically porous organic molecules. Most importantly, the moderate adsorbate‐adsorbent interaction allows the PMC to be readily regenerated, and therefore applied to pressure swing adsorption processes. The eluted N2and CH4are obtained with over 99.9 % and 99.8 % purity, respectively, and the separation performance is stable for 30 cycles. Coupled with its easy synthesis, cyclotetrabenzoin acetate is a promising adsorbent for CO2separations from flue and natural gases.