skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancing cognitive assessment through multimodal sensing: A case study using the block design test
Many cognitive assessments are limited by their reliance on relatively sparse measures of performance, like per-item accuracy or reaction time. Capturing more detailed behavioral measurements from cognitive assessments will enhance their utility in many settings, from individual clinical evaluations to large-scale research studies. We demonstrate the feasibility of combining scene and gaze cameras with supervised learning algorithms to automatically measure key behaviors on the block design test, a widely used test of visuospatial cognitive ability. We also discuss how this block-design measurement system could enhance the assessment of many critical cognitive and meta-cognitive functions such as attention, planning, progress monitoring, and strategy selection.  more » « less
Award ID(s):
1730044
PAR ID:
10209949
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 42nd Annual Meeting of the Cognitive Science Society
Page Range / eLocation ID:
2546-2552
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The block design test (BDT), in which a person has to recreate a visual design using colored blocks, is notable among cognitive assessments because it makes so much of a person's problem-solving strategy ``visible'' through their ongoing manual actions. While, for decades, numerous pockets of research on the BDT have identified certain behavioral variables as being important for certain cognitive or neurological hypotheses, there is no unifying framework for bringing together this spread of variables and hypotheses. In this paper, we identify 25 independent and dependent variables that have been examined as part of published BDT studies across many areas of cognitive science and present a sample of the research on each one. We also suggest variables of interest for future BDT research, especially as made possible with the advent of advanced recording technologies like wearable eye trackers. 
    more » « less
  2. The multivariate normative comparison (MNC) method has been used for identifying cognitive impairment. When participants' cognitive brain domains are evaluated regularly, the longitudinal MNC (LMNC) has been introduced to correct for the intercorrelation among repeated assessments of multiple cognitive domains in the same participant. However, it may not be practical to wait until the end of study for diagnosis. For example, in participants of the Multicenter AIDS Cohort Study (MACS), cognitive functioning has been evaluated repeatedly for more than 35 years. Therefore, it is optimal to identify cognitive impairment at each assessment, while the family‐wise error rate (FWER) is controlled with unknown number of assessments in future. In this work, we propose to use the difference of consecutive LMNC test statistics to construct independent tests. Frequency modeling can help predict how many assessments each participant will have, so Bonferroni‐type correction can be easily adapted. A chi‐squared test is used under the assumption of multivariate normality, and permutation test is proposed where this assumption is violated. We showed through simulation and the MACS data that our method controlled FWER below a predetermined level. 
    more » « less
  3. With rising interest in innovative construction methodologies, global construction companies are actively exploring emerging sensing technologies and employing data analytics techniques to draw insights and improve their operations. While numerous educational disciplines employ Block-based Programming Interfaces to enhance domain-specific data-related inquiry and visualization skills, the construction sector has yet to fully explore this practical approach. Introducing block interfaces in construction education may overwhelm newcomers with excessive cognitive load. Past research has primarily relied on subjective measures, overlooking objective indicators for assessing cognitive responses to block interfaces’ interaction elements. This study evaluates the cognitive load induced using InerSens, a Block Programming Interface designed to address authentic construction challenges in ergonomic risk assessment. Electroencephalography is utilized to measure cognitive load, and the results are compared to those of a traditional tool, Excel. Theta Power Spectral Density in the frontal brain region, an indicator of cognitive load, demonstrates that in four out of six tasks, InerSens incurs lower cognitive load than Excel. The findings of this study underscore the potential of InerSens as a viable tool in managing cognitive load efficiency, paving the way for more effective and streamlined sensor data analytics learning experiences for future construction professionals. 
    more » « less
  4. Caring assessments is an assessment design framework that considers the learner as a whole and can be used to design assessment opportunities that learners find engaging and appropriate for demonstrating what they know and can do. This framework considers learners’ cognitive, meta-cognitive, intra-and inter-personal skills, aspects of the learning context, and cultural and linguistic backgrounds as ways to adapt assessments. Extending previous work on intelligent tutoring systems that “care” from the field of artificial intelligence in education (AIEd), this framework can inform research and development of personalized and socioculturally responsive assessments that support students’ needs. In this article, we (a) describe the caring assessment framework and its unique contributions to the field, (b) summarize current and emerging research on caring assessments related to students’ emotions, individual differences, and cultural contexts, and (c) discuss challenges and opportunities for future research on caring assessments in the service of developing and implementing personalized and socioculturally responsive interactive digital assessments. 
    more » « less
  5. Abstract International large-scale assessments (ILSAs) play an important role in educational research and policy making. They collect valuable data on education quality and performance development across many education systems, giving countries the opportunity to share techniques, organisational structures, and policies that have proven efficient and successful. To gain insights from ILSA data, we identify non-cognitive variables associated with students’ academic performance. This problem has three analytical challenges: (a) academic performance is measured by cognitive items under a matrix sampling design; (b) there are many missing values in the non-cognitive variables; and (c) multiple comparisons due to a large number of non-cognitive variables. We consider an application to the Programme for International Student Assessment, aiming to identify non-cognitive variables associated with students’ performance in science. We formulate it as a variable selection problem under a general latent variable model framework and further propose a knockoff method that conducts variable selection with a controlled error rate for false selections. 
    more » « less