skip to main content


Title: Eukaryotic plankton communities across reef environments in Bocas del Toro Archipelago (Panama).
Variation in light and temperature can influence the genetic diversity and structure of marine plankton communities. While open-ocean plankton communities receive much scientific attention, little is known about how environmental variation affects plankton communities on tropical coral reefs. Here, we characterize eukaryotic plankton communities on coral reefs across the Bocas del Toro Archipelago, Panama´. Temperature loggers were deployed, and midday light levels were measured to quantify environmental differences across reefs at four inshore and four offshore sites (Inshore = Punta Donato, Smithsonian Tropical Research Institute (STRI) Point, Cristobal, Punta Laurel and Offshore = Drago Mar, Bastimentos North, Bastimentos South, and Cayo de Agua). Triplicate vertical plankton tows were collected midday, and high-throughput 18S ribosomal DNA metabarcoding was leveraged to investigate the relationship between eukaryotic plankton community structure and inshore/offshore reef environments. Plankton communities from STRI Point were additionally characterized in the morning (* 08:00), midday (* 12:00), and late-day (* 16:00) to quantify temporal variation within a single site. We found that inshore reefs experienced higher average seawater temperatures, while offshore sites offered higher light levels, presumably associated with reduced water turbidity on reefs further from shore. These significant environmental differences between inshore and offshore reefs corresponded with overall plankton community differences. We also found that temporal variation played a structuring role within these plankton communities, and conclude that time of community sampling is an important consideration for future studies. Follow-up studies focusing on more intensive sampling efforts across space and time, coupled with techniques that can detect more subtle genetic differences between and within communities will more fully capture plankton dynamics in this region and beyond.  more » « less
Award ID(s):
1659605
PAR ID:
10210250
Author(s) / Creator(s):
Date Published:
Journal Name:
Coral Reefs
Volume:
39
Page Range / eLocation ID:
1453-1469
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Identifying which factors lead to coral bleaching resistance is a priority given the global decline of coral reefs with ocean warming. During the second year of back‐to‐back bleaching events in the Florida Keys in 2014 and 2015, we characterized key environmental and biological factors associated with bleaching resilience in the threatened reef‐building coralOrbicella faveolata. Ten reefs (five inshore, five offshore, 179 corals total) were sampled during bleaching (September 2015) and recovery (May 2016). Corals were genotyped with 2bRADand profiled for algal symbiont abundance and type.O. faveolataat the inshore sites, despite higher temperatures, demonstrated significantly higher bleaching resistance and better recovery compared to offshore. The thermotolerantDurusdinium trenchii(formerlySymbiondinium trenchii) was the dominant endosymbiont type region‐wide during initial (78.0% of corals sampled) and final (77.2%) sampling; >90% of the nonbleached corals were dominated byD. trenchii. 2bRADhost genotyping found no genetic structure among reefs, but inshore sites showed a high level of clonality. While none of the measured environmental parameters were correlated with bleaching, 71% of variation in bleaching resistance and 73% of variation in the proportion ofD. trenchiiwas attributable to differences between genets, highlighting the leading role of genetics in shaping natural bleaching patterns. Notably,D. trenchiiwas rarely dominant inO. faveolatafrom the Florida Keys in previous studies, even during bleaching. The region‐wide high abundance ofD. trenchiiwas likely driven by repeated bleaching associated with the two warmest years on record for the Florida Keys (2014 and 2015). On inshore reefs in the Upper Florida Keys,O. faveolatawas most abundant, had the highest bleaching resistance, and contained the most corals dominated byD. trenchii, illustrating a causal link between heat tolerance and ecosystem resilience with global change.

     
    more » « less
  2. Abstract

    Insights into assemblages that can persist in extreme environments are still emerging. Ocean warming and acidification select against species with low physiological tolerance (trait‐based ‘filtering’). However, intraspecific trait variation can promote species adaptation and persistence, with potentially large effects on assemblage structure. By sampling nine coral traits (four morphological, four tissue and one skeletal) along an offshore–inshore gradient in temperature and pH, we show that distantly related coral species undergo consistent intraspecific changes as they cross into warm, acidic environments. Intraspecific variation and species turnover each favoured colonies with greater tissue biomass, higher symbiont densities and reduced skeletal investments, indicating strong filtering on colony physiology within and across species. Physiological tissue traits were highly variable within species and were independent of morphology, enabling morphologically diverse species to cross into sites of elevated temperature and acidity. Widespread intraspecific change can therefore counter the loss of biodiversity and morphological structure across a steep environmental gradient.

     
    more » « less
  3. Tropical environments with unique abiotic and biotic factors—such as salt ponds, mangroves, and coral reefs—are often in close proximity. The heterogeneity of these environments is reflected in community shifts over short distances, resulting in high biodiversity. While phytoplankton assemblages physically associated with corals, particularly their symbionts, are well studied, less is known about phytoplankton diversity across tropical aquatic environments. We assess shifts in phytoplankton community composition along inshore to offshore gradients by sequencing and analyzing 16S rRNA gene amplicons using primers targeting the V1-V2 region that capture plastids from eukaryotic phytoplankton and cyanobacteria, as well as heterotrophic bacteria. Microbial alpha diversity computed from 16S V1-V2 amplicon sequence variant (ASV) data from 282 samples collected in and around Curaçao, in the Southern Caribbean Sea, varied more within the dynamic salt ponds, salterns, and mangroves, compared to the seemingly stable above-reef, off-reef, and open sea environments. Among eukaryotic phytoplankton, stramenopiles often exhibited the highest relative abundances in mangrove, above-reef, off-reef, and open sea environments, where cyanobacteria also showed high relative abundances. Within stramenopiles, diatom amplicons dominated in salt ponds and mangroves, while dictyochophytes and pelagophytes prevailed above reefs and offshore. Green algae and cryptophytes were also present, and the former exhibited transitions following the gradient from inland to offshore. Chlorophytes and prasinophyte Class IV dominated in salt ponds, while prasinophyte Class II, including Micromonas commoda and Ostreococcus Clade OII, had the highest relative abundances of green algae in mangroves, above-reef, off-reef, and the open sea. To improve Class II prasinophyte classification, we sequenced 18S rRNA gene amplicons from the V4 region in 41 samples which were used to interrelate plastid-based results with information on uncultured prasinophyte species from prior 18S rRNA gene-based studies. This highlighted the presence of newly described Ostreococcus bengalensis and two Micromonas candidate species. Network analyses identified co-occurrence patterns between individual phytoplankton groups, including cyanobacteria, and heterotrophic bacteria. Our study reveals multiple uncultured and novel lineages within green algae and dictyochophytes in tropical marine habitats. Collectively, the algal diversity patterns and potential co-occurrence relationships observed in connection to physicochemical and spatial influences help provide a baseline against which future change can be assessed. 
    more » « less
  4. Abstract

    The Coral Triangle encompasses nearly 30% of the world's coral reefs and is widely considered the epicenter of marine biodiversity. Destructive fishing practices and natural disturbances common to this region damage reefs leaving behind fields of coral rubble. While the impacts of disturbances in these ecosystems are well documented on metazoans, we have a poor understanding of their impact on microbial communities at the base of the food web. We use metabarcoding to characterize protist community composition in sites of varying fisheries management schemes and benthic profiles across the island of Lombok, Indonesia. Our study shows that rubble coverage and net primary productivity are the strongest explainers of variation in protist communities across Lombok. More specifically, rubble fields are characterized by increases in small heterotrophic protists, including ciliates and cercozoans. In addition to shifts in heterotrophic protist communities, we also observed increases in diatom relative abundance in rubble fields, which corresponded to sites with higher net primary productivity. These results are the first to characterize protist communities in tropical marine rubble fields and provide insight on environmental factors potentially driving these shifts on a local scale.

     
    more » « less
  5. Abstract

    Phenotypic variation can lead to variation in the strength and outcome of species interactions. Variation in phenotypic traits can arise due to plastic responses to environmental stimuli, underlying genetic variation, or both, and may reflect differences in the focal organism or aspects of the extended phenotype (e.g., associated microbes). We used a reciprocal transplant experiment ofPoritescorals to evaluate the role of plasticity vs. heritable diversity on phenotypic traits and performance of corals that varied in their prior exposure to vermetid gastropods, an organism known to reduce coral growth and survival. We measured a suite of phenotypic traits associated with coral performance, many of which showed a plastic response to vermetid exposure. Vermetids decreased calcification of corals, increased microbial diversity, and shifted microbial composition. Most traits also showed a signature of previous exposure environment that persisted even when exposure was reversed: i.e., under the same conditions, corals naïve to vermetids had slower calcification rates, thicker tissues, higher Symbiodiniaceae densities, and different microbiomes than corals previously exposed to vermetids. We suggest the phenotypic differences are heritable, as reefs with and without vermetids were comprised of two different mitotypes, that revealed high, consistent genetic variation. Vermetids were only found on the fast‐growing coral mitotype that was characterized by thin tissue, and that likely had a history of disturbance. As extended phenotypes can have community impacts, we suggest vermetid, in addition to microbes, are part of the extended community phenotype of these corals. Coral genotypes can establish different reef trajectories, with thin‐tissue types more prone to disturbance and subsequent colonization by other species, like vermetids, which can further facilitate the degradation of coral reefs. The effects of the extended phenotype of species likely influence heterogeneity across landscapes as well as temporal differences in community composition.

     
    more » « less