skip to main content

Title: Pervasive cropland in protected areas highlight trade-offs between conservation and food security

Global cropland expansion over the last century caused widespread habitat loss and degradation. Establishment of protected areas aims to counteract the loss of habitats and to slow species extinctions. However, many protected areas also include high levels of habitat disturbance and conversion for uses such as cropland. Understanding where and why this occurs may realign conservation priorities and inform protected area policy in light of competing priorities such as food security. Here, we use our global synthesis cropland dataset to quantify cropland in protected areas globally and assess their relationship to conservation aims and socio-environmental context. We estimate that cropland occupies 1.4 million km2or 6% of global protected area. Cropland occurs across all protected area management types, with 22% occurring in strictly protected areas. Cropland inside protected areas is more prevalent in countries with higher population density, lower income inequality, and with higher agricultural suitability of protected lands. While this phenomenon is dominant in midnorthern latitudes, areas of cropland in protected areas of the tropics and subtropics may present greater trade-offs due to higher levels of both biodiversity and food insecurity. Although area-based targets are prominent in biodiversity goal-setting, our results show that they can mask persistent anthropogenic land uses more » detrimental to native ecosystem conservation. To ensure the long-term efficacy of protected areas, post-2020 goal setting must link aims for biodiversity and human health and improve monitoring of conservation outcomes in cropland-impacted protected areas.

« less
Publication Date:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range or eLocation-ID:
Article No. e2010121118
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Globally, biodiversity has declined at an unprecedented rate, challenging the viability of ecosystems, species, and ecological functions and their corresponding services. Payments for ecosystem services (PES) programs have been established and implemented worldwide to combat the degradation or loss of essential ecosystems and ecosystem services with-out sacrificing the well-being of people. With an overarching goal of reducing soil ero-sion, China’s Grain-to-Green program (GTGP) converts cropland to forest or grassland. As one of the largest PES programs in the world, GTGP has great potential to offer biodi-versity conservation co-benefits. To consider how GTGP may influence biodiversity, we measured forest structure and plant and wildlife species diversity at both GTGP forest and natural forest sites in Fangjingshan National Nature Reserve, China. We also evaluated the relationship between canopy cover and biodiversity measures to test whether forest cover, the most commonly measured and reported ecological metric of PES programs, might act as a good proxy for other biodiversity related parameters. We found that forest cover and species diversity increased after GTGP implementation as understory and overstory plant cover, and understory and midstory plant diversity at GTGP sites were similar to natural forest. Our results suggest that GTGP may also have been associated withmore »increased habitat for protected and vulnerable wildlife species including Elliot’s pheasant (Syrmaticus elli-oti), hog badger (Arctonyx collaris), and wild boar (Sus scrofa). Nevertheless, we identi-fied key differences between GTGP forest and natural forest, particularly variation in forest types and heterogeneity of overstory vegetation. As a result, plant overstory diversity and wildlife species richness at GTGP forest were significantly lower than at natural forest. Our findings suggest, while forest cover may be a good proxy for some metrics of forest struc-ture, it does not serve as a robust proxy for many biodiversity parameters. These findings highlight the need for and importance of robust and representative indicators or proxy vari-ables for measuring ecological effects of PES programs on compositional and structural diversity. We demonstrate that PES may lead to biodiversity co-benefits, but changes in program implementation could improve the return on investment of PES programs to sup-port conservation of biodiversity.« less
  2. To meet the ambitious objectives of biodiversity and climate conventions, the international community requires clarity on how these objectives can be operationalized spatially and how multiple targets can be pursued concurrently. To support goal setting and the implementation of international strategies and action plans, spatial guidance is needed to identify which land areas have the potential to generate the greatest synergies between conserving biodiversity and nature’s contributions to people. Here we present results from a joint optimization that minimizes the number of threatened species, maximizes carbon retention and water quality regulation, and ranks terrestrial conservation priorities globally. We found that selecting the top-ranked 30% and 50% of terrestrial land area would conserve respectively 60.7% and 85.3% of the estimated total carbon stock and 66% and 89.8% of all clean water, in addition to meeting conservation targets for 57.9% and 79% of all species considered. Our data and prioritization further suggest that adequately conserving all species considered (vertebrates and plants) would require giving conservation attention to ~70% of the terrestrial land surface. If priority was given to biodiversity only, managing 30% of optimally located land area for conservation may be sufficient to meet conservation targets for 81.3% of the terrestrial plantmore »and vertebrate species considered. Our results provide a global assessment of where land could be optimally managed for conservation. We discuss how such a spatial prioritization framework can support the implementation of the biodiversity and climate conventions.« less
  3. Safeguarding Earth’s tree diversity is a conservation priority due to the importance of trees for biodiversity and ecosystem functions and services such as carbon sequestration. Here, we improve the foundation for effective conservation of global tree diversity by analyzing a recently developed database of tree species covering 46,752 species. We quantify range protection and anthropogenic pressures for each species and develop conservation priorities across taxonomic, phylogenetic, and functional diversity dimensions. We also assess the effectiveness of several influential proposed conservation prioritization frameworks to protect the top 17% and top 50% of tree priority areas. We find that an average of 50.2% of a tree species’ range occurs in 110-km grid cells without any protected areas (PAs), with 6,377 small-range tree species fully unprotected, and that 83% of tree species experience nonnegligible human pressure across their range on average. Protecting high-priority areas for the top 17% and 50% priority thresholds would increase the average protected proportion of each tree species’ range to 65.5% and 82.6%, respectively, leaving many fewer species (2,151 and 2,010) completely unprotected. The priority areas identified for trees match well to the Global 200 Ecoregions framework, revealing that priority areas for trees would in large part also optimizemore »protection for terrestrial biodiversity overall. Based on range estimates for >46,000 tree species, our findings show that a large proportion of tree species receive limited protection by current PAs and are under substantial human pressure. Improved protection of biodiversity overall would also strongly benefit global tree diversity.« less
  4. Abstract

    Climate change is impacting global crop productivity, and agricultural land suitability is predicted to significantly shift in the future. Responses to changing conditions and increasing yield variability can range from altered management strategies to outright land use conversions that may have significant environmental and socioeconomic ramifications. However, the extent to which agricultural land use changes in response to variations in climate is unclear at larger scales. Improved understanding of these dynamics is important since land use changes will have consequences not only for food security but also for ecosystem health, biodiversity, carbon storage, and regional and global climate. In this study, we combine land use products derived from the Moderate Resolution Imaging Spectroradiometer with climate reanalysis data from the European Centre for Medium-Range Weather Forecasts Reanalysis v5 to analyze correspondence between changes in cropland and changes in temperature and water availability from 2001 to 2018. While climate trends explained little of the variability in land cover changes, increasing temperature, extreme heat days, potential evaporation, and drought severity were associated with higher levels of cropland loss. These patterns were strongest in regions with more cropland change, and generally reflected underlying climate suitability—they were amplified in hotter and drier regions, andmore »reversed direction in cooler and wetter regions. At national scales, climate response patterns varied significantly, reflecting the importance of socioeconomic, political, and geographic factors, as well as differences in adaptation strategies. This global-scale analysis does not attempt to explain local mechanisms of change but identifies climate-cropland patterns that exist in aggregate and may be hard to perceive at local scales. It is intended to supplement regional studies, providing further context for locally-observed phenomena and highlighting patterns that require further analysis.

    « less
  5. Abstract

    Coastal marine atmospheric fog has recently been implicated as a potential source of ocean-derived monomethylmercury (MMHg) to coastal terrestrial ecosystems through the process of sea-to-land advection of foggy air masses followed by wet deposition. This study examined whether pumas (Puma concolor) in coastal central California, USA, and their associated food web, have elevated concentrations of MMHg, which could be indicative of their habitat being in a region that is regularly inundated with marine fog. We found that adult puma fur and fur-normalized whiskers in our marine fog-influenced study region had a mean (±SE) total Hg (THg) (a convenient surrogate for MMHg) concentration of 1544 ± 151 ng g−1(N = 94), which was three times higher (P < 0.01) than mean THg in comparable samples from inland areas of California (492 ± 119 ng g−1, N = 18). Pumas in California eat primarily black-tailed and/or mule deer (Odocoileus hemionus), and THg in deer fur from the two regions was also significantly different (coastal 28.1 ± 2.9, N = 55, vs. inland 15.5 ± 1.5 ng g−1, N = 40). We suggest that atmospheric deposition of MMHg through fog may be contributing to this pattern, as we also observed significantly higher MMHg concentrations in lace lichen (Ramalina menziesii), a deer food and a bioindicator of atmospheric deposition, at sites with the highest fog frequencies. Atmore »these ocean-facing sites, deer samples had significantly higher THg concentrations compared to those from more inland bay-facing sites. Our results suggest that fog-borne MMHg, while likely a small fraction of Hg in all atmospheric deposition, may contribute, disproportionately, to the bioaccumulation of Hg to levels that approach toxicological thresholds in at least one apex predator. As global mercury levels increase, coastal food webs may be at risk to the toxicological effects of increased methylmercury burdens.

    « less