skip to main content


Title: Seismicity trends and detachment fault structure at 13°N, Mid-Atlantic Ridge
At slow-spreading ridges, plate separation is commonly partly accommodated by slip on long-lived detachment faults, exposing upper mantle and lower crustal rocks on the seafloor. However, the mechanics of this process, the subsurface structure, and the interaction of these faults remain largely unknown. We report the results of a network of 56 ocean-bottom seismographs (OBSs), deployed in 2016 at the Mid-Atlantic Ridge near 13°N, that provided dense spatial coverage of two adjacent detachment faults and the intervening ridge axis. Although both detachments exhibited high levels of seismicity, they are separated by an ~8-km-wide aseismic zone, indicating that they are mechanically decoupled. A linear band of seismic activity, possibly indicating magmatism, crosscuts the 13°30′N domed detachment surface, confirming previous evidence for fault abandonment. Farther south, where the 2016 OBS network spatially overlapped with a similar survey done in 2014, significant changes in the patterns of seismicity between these surveys are observed. These changes suggest that oceanic detachments undergo previously unobserved cycles of stress accumulation and release as plate spreading is accommodated.  more » « less
Award ID(s):
1839727
NSF-PAR ID:
10210650
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Geology
ISSN:
0091-7613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Gravity, magnetic, and bathymetry data collected along a continuous 1,400‐km‐long spreading‐parallel flow line across the Mid‐Atlantic Ridge indicate significant tectonic and magmatic fluctuations in the formation of oceanic crust over a range of time scales. The transect spans from 28 Ma on the African Plate to 74 Ma on the North American plate, crossing the Mid‐Atlantic Ridge at 35.8°N. Gravity‐derived crustal thicknesses vary from 3–9 km with a standard deviation of 1.0 km. Spectral analysis of bathymetry and residual mantle Bouguer anomaly show a diffuse power at >1 Myr and concurrent peaks at 390, 550, and 950 kyr. Large‐scale (>10 km) mantle thermal and compositional heterogeneities, variations in upper mantle flow, and detachment faulting likely generate the >1 Myr diffuse power. The 550‐ and 950‐kyr peaks may reflect the presence of magma solitons and/or regularly spaced ~7.7 and 13.3 km short‐wavelength mantle compositional heterogeneities. The 390‐kyr spectral peak corresponds to the characteristic spacing of faults along the flow line. Fault spacing also varies over longer periods (>10 Myr), which we interpret as reflecting long‐lived changes in the fraction of tectonically versus magmatically accommodated extensional strain. A newly discovered off‐axis oceanic core complex (Kafka Dome) found at 8 Ma on the African plate further suggests extended time periods of tectonically‐dominated plate separation. Fault spacing negatively correlates with gravity‐derived crustal thickness, supporting a strong link between magma input and fault style at mid‐ocean ridges.

     
    more » « less
  2. Abstract

    Seismicity along mid‐ocean ridges and oceanic transform faults provides insights into the processes of crustal accretion and strike‐slip deformation. In the equatorial Atlantic ocean, the slow‐spreading Mid‐Atlantic Ridge is offset by some of the longest‐offset transform faults on Earth, which remain relatively poorly understood due to its remote location far from land‐based teleseismic receivers. A catalog of T‐phase events detected by an array of 10 autonomous hydrophones deployed between 2011 and 2015, extending from 20°N to 10°S is presented. The final catalog of 6,843 events has a magnitude of completeness of 3.3, compared to 4.4 for the International Seismic Center teleseismic catalog covering the same region, and allows investigation of the dual processes of crustal accretion and transform fault slip. The seismicity rate observed at asymmetric spreading segments (those hosting detachment faults) is significantly higher than that of symmetric spreading centers, and 74% of known hydrothermal vents along the equatorial Mid‐Atlantic Ridge occur on asymmetric spreading segments. Aseismic patches are present on nearly all equatorial Atlantic transform faults, including on the Romanche transform where regional rotation and transpression could explain both bathymetric uplift and reduction in seismic activity. The observed patterns in seismicity provide insight into the thermal and mechanical structure of the ridge axis and associated transform faults, and potentially provide a method for investigating the distribution of hydrothermal vent systems.

     
    more » « less
  3. Abstract

    Fissures and faults provide insight into how plate separation is accommodated by magmatism and brittle deformation during crustal accretion. Although fissure and fault geometry can be used to quantify the spreading process at mid‐ocean ridges, accurate measurements are rare due to insufficiently detailed mapping data. Here, fissures and faults at the fast‐spreading 9°50′N segment of the East Pacific Rise were mapped using bathymetric data collected at 1‐m horizontal resolution by autonomous underwater vehicleSentry. Fault dip estimates from the bathymetric data were calibrated using co‐registered near‐bottom imagery and depth transects acquired by remotely operated vehicleJason. Fissures are classified as either eruptive or non‐eruptive (i.e., cracks). Tectonic strain estimated from corrected fault heaves suggests that faulting plays a negligible role in the plate separation on crust younger than 72 kyr (<4 km from the ridge axis). Pre‐ and post‐eruption surveys show that most fissures were reactivated during the eruptions in 2005–2006. Variable eruptive fissure geometry could be explained by the frequency with which each fissure is reactivated and partially infilled. Fissure swarms and lava plateaus in low‐relief areas >2 km from the ridge are spatially associated with off‐axis lower‐crustal magma lenses identified in multichannel seismic data. Deep, closely spaced fissures overlie a relatively shallow portion of the axial magma lens. The width of on‐axis fissures and inferred subsurface dike geometry imply a ∼9‐year long diking recurrence interval to fully accommodate plate spreading, which is broadly consistent with cycle intervals obtained from estimates of melt extraction rates, eruption volumes, and spreading rate.

     
    more » « less
  4. SUMMARY

    Seismicity along transform faults provides important constraints for our understanding of the factors that control earthquake ruptures. Oceanic transform faults are particularly informative due to their relatively simple structure in comparison to their continental counterparts. The seismicity of several fast-moving transform faults has been investigated by local networks, but as of today there been few studies of transform faults in slow spreading ridges. Here, we present the first local seismicity catalogue based on event data recorded by a temporary broad-band network of 39 ocean–bottom seismometers located around the slow-moving Chain Transform Fault (CTF) along the Mid-Atlantic Ridge (MAR) from 2016 to 2017 March. We locate 972 events in the area by simultaneously inverting for a 1-D velocity model informed by the event P- and S-arrival times. We refine the depths and focal mechanisms of the larger events using deviatoric moment tensor inversion. Most of the earthquakes are located along the CTF (700) and Romanche transform fault (94) and the MAR (155); a smaller number (23) can be observed on the continuing fracture zones or in intraplate locations. The ridge events are characterized by normal faulting and most of the transform events are characterized by strike-slip faulting, but with several reverse mechanisms that are likely related to transpressional stresses in the region. CTF events range in magnitude from 1.1 to 5.6 with a magnitude of completeness around 2.3. Along the CTF we calculate a b-value of 0.81 ± 0.09. The event depths are mostly shallower than 15 km below sea level (523), but a small number of high-quality earthquakes (16) are located deeper, with some (8) located deeper than the brittle-ductile transition as predicted by the 600 °C-isotherm from a simple thermal model. The deeper events could be explained by the control of sea water infiltration on the brittle failure limit.

     
    more » « less
  5. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 357 will be implemented as a Mission Specific Platform (MSP) expedition that will address two exciting discoveries in mid-ocean-ridge research: off-axis, serpentinite-hosted hydrothermal activity exemplified by the Lost City hydrothermal field (LCHF) and the significance of tectono-magmatic processes in forming and exposing heterogeneous mafic and variably serpentinized ultramafic lithosphere that are key components of slow- and ultraslow-spreading ridges. Serpentinization is a fundamental process that controls rheology and geophysical properties of the oceanic lithosphere and has major consequences for heat flux, geochemical cycles, and microbial activity in a wide variety of environments. However, we currently have no constraints on the nature and distribution of microbial communities in ultramafic subsurface environments. Our planned drilling focuses on (1) exploring the extent and activity of the subsurface biosphere in young ultramafic and mafic seafloor; (2) quantifying the role of serpentinization in driving hydrothermal systems, in sustaining microbiological communities, and in the sequestration of carbon in ultramafic rocks; (3) assessing how abiotic and biotic processes change with aging of the lithosphere and with variations in rock type; and (4) characterizing tectono-magmatic processes that lead to lithospheric heterogeneities and the evolution of hydrothermal activity associated with detachment faulting. This expedition will be the first IODP expedition to utilize seafloor drill technology (MeBo and BGS Seafloor Rockdrill 2) to core a series of shallow (50–80 m) holes across Atlantis Massif—an oceanic core complex (30°N, Mid-Atlantic Ridge), where detachment faulting exposes mafic and ultramafic lithologies on the seafloor. We aim to recover in situ sequences of sediments, hydrothermal deposits/veins, and basement rocks that comprise a broad zone of detachment faulting across (1) a spreading-parallel (east–west) profile along the southern wall and at varying distances from the LCHF and (2) a ridge-parallel (north–south) profile into the center of the massif, where the dominant rock type changes from ultramafic to mafic. Drilling the east–west profile will allow us to evaluate how microbial communities evolve with variations in hydrothermal activity and with age of emplacement on the seafloor. We aim to compare microbial activity and diversity in areas of diffuse, H2-rich fluid flow and carbonate precipitation with communities in areas away from the active hydrothermal system and with variable substrates and crustal ages. By quantifying the extent and evolution of carbonate precipitation we will evaluate the potential for natural CO2 sequestration in serpentinizing peridotites. Drilling the north–south profile will allow us to evaluate the nature of the deep biosphere in varying lithologies and to assess the role of the differing rheologies of gabbros and serpentinized ultramafic rocks in localizing detachment faults. This expedition will also include engineering developments to sample bottom waters before and after drilling and to monitor methane, dissolved oxygen, redox, conductivity, temperature, and depth while drilling. In addition, seafloor operations will include deploying borehole plugs and swellable packers to seal the holes at high-priority sites after drilling to provide opportunities for future hydrogeological and microbiological experiments. 
    more » « less