skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Active Perception using Light Curtains for Autonomous Driving
Most real-world 3D sensors such as LiDARs perform fixed scans of the entire environment, while being decoupled from the recognition system that processes the sensor data. In this work, we propose a method for 3D object recognition using light curtains, a resource-efficient controllable sensor that measures depth at user-specified locations in the environment. Crucially, we propose using prediction uncertainty of a deep learning based 3D point cloud detector to guide active perception. Given a neural network's uncertainty, we derive an optimization objective to place light curtains using the principle of maximizing information gain. Then, we develop a novel and efficient optimization algorithm to maximize this objective by encoding the physical constraints of the device into a constraint graph and optimizing with dynamic programming. We show how a 3D detector can be trained to detect objects in a scene by sequentially placing uncertainty-guided light curtains to successively improve detection accuracy.  more » « less
Award ID(s):
1849154
PAR ID:
10210662
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
European Conference on Computer Vision
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A vehicle on a road or a robot in the field does not need a full-featured 3D depth sensor to detect potential collisions or monitor its blind spot. Instead, it needs to only monitor if any object comes within its near proximity which is an easier task than full depth scanning. We introduce a novel device that monitors the presence of objects on a virtual shell near the device, which we refer to as a light curtain. Light curtains offer a light-weight, resource-efficient and programmable approach to proximity awareness for obstacle avoidance and navigation. They also have additional benefits in terms of improving visibility in fog as well as flexibility in handling light fall-off. Our prototype for generating light curtains works by rapidly rotating a line sensor and a line laser, in synchrony. The device is capable of generating light curtains of various shapes with a range of 20–30 m in sunlight (40 m under cloudy skies and 50 m indoors) and adapts dynamically to the demands of the task. We analyze properties of light curtains and various approaches to optimize their thickness as well as power requirements. We showcase the potential of light curtains using a range of real-world scenarios. 
    more » « less
  2. null (Ed.)
    To safely navigate unknown environments; robots must accurately perceive dynamic obstacles. Instead of directly measuring the scene depth with a LiDAR sensor; we explore the use of a much cheaper and higher resolution sensor: programmable light curtains. Light curtains are controllable depth sensors that sense only along a surface that a user selects. We use light curtains to estimate the safety envelope of a scene: a hypothetical surface that separates the robot from all obstacles. We show that generating light curtains that sense random locations (from a particular distribution) can quickly discover the safety envelope for scenes with unknown objects. Importantly; we produce theoretical safety guarantees on the probability of detecting an obstacle using random curtains. We combine random curtains with a machine learning based model that forecasts and tracks the motion of the safety envelope efficiently. Our method accurately estimates safety envelopes while providing probabilistic safety guarantees that can be used to certify the efficacy of a robot perception system to detect and avoid dynamic obstacles. We evaluate our approach in a simulated urban driving environment and a real-world environment with moving pedestrians using a light curtain device and show that we can estimate safety envelopes efficiently and effectively. 
    more » « less
  3. Active sensing through the use of Adaptive Depth Sensors is a nascent field, with potential in areas such as Advanced driver-assistance systems (ADAS). They do however require dynamically driving a laser / light-source to a specific location to capture information, with one such class of sensor being the Triangulation Light Curtains (LC). In this work, we introduce a novel approach that exploits prior depth distributions from RGB cameras to drive a Light Curtain’s laser line to regions of uncertainty to get new measurements. These measurements are utilized such that depth uncertainty is reduced and errors get corrected recursively. We show real-world experiments that validate our approach in outdoor and driving settings, and demonstrate qualitative and quantitative improvements in depth RMSE when RGB cameras are used in tandem with a Light Curtain. 
    more » « less
  4. Accurate 3D object detection in real-world environments requires a huge amount of annotated data with high quality. Acquiring such data is tedious and expensive, and often needs repeated effort when a new sensor is adopted or when the detector is deployed in a new environment. We investigate a new scenario to construct 3D object detectors: learning from the predictions of a nearby unit that is equipped with an accurate detector. For example, when a self-driving car enters a new area, it may learn from other traffic participants whose detectors have been optimized for that area. This setting is label-efficient, sensor-agnostic, and communication-efficient: nearby units only need to share the predictions with the ego agent (e.g., car). Naively using the received predictions as ground-truths to train the detector for the ego car, however, leads to inferior performance. We systematically study the problem and identify viewpoint mismatches and mislocalization (due to synchronization and GPS errors) as the main causes, which unavoidably result in false positives, false negatives, and inaccurate pseudo labels. We propose a distance-based curriculum, first learning from closer units with similar viewpoints and subsequently improving the quality of other units' predictions via self-training. We further demonstrate that an effective pseudo label refinement module can be trained with a handful of annotated data, largely reducing the data quantity necessary to train an object detector. We validate our approach on the recently released real-world collaborative driving dataset, using reference cars' predictions as pseudo labels for the ego car. Extensive experiments including several scenarios (e.g., different sensors, detectors, and domains) demonstrate the effectiveness of our approach toward label-efficient learning of 3D perception from other units' predictions. 
    more » « less
  5. Visual place recognition is essential for large-scale simultaneous localization and mapping (SLAM). Long-term robot operations across different time of the days, months, and seasons introduce new challenges from significant environment appearance variations. In this paper, we propose a novel method to learn a location representation that can integrate the semantic landmarks of a place with its holistic representation. To promote the robustness of our new model against the drastic appearance variations due to long-term visual changes, we formulate our objective to use non-squared ℓ2-norm distances, which leads to a difficult optimization problem that minimizes the ratio of the ℓ2,1-norms of matrices. To solve our objective, we derive a new efficient iterative algorithm, whose convergence is rigorously guaranteed by theory. In addition, because our solution is strictly orthogonal, the learned location representations can have better place recognition capabilities. We evaluate the proposed method using two large-scale benchmark data sets, the CMU-VL and Nordland data sets. Experimental results have validated the effectiveness of our new method in long-term visual place recognition applications. 
    more » « less