skip to main content


Title: Newtonian Predictions Are Integrated With Sensory Information in 3D Motion Perception

Because the motions of everyday objects obey Newtonian mechanics, perhaps these laws or approximations thereof are internalized by the brain to facilitate motion perception. Shepard’s seminal investigations of this hypothesis demonstrated that the visual system fills in missing information in a manner consistent with kinematic constraints. Here, we show that perception relies on internalized regularities not only when filling in missing information but also when available motion information is inconsistent with the expected outcome of a physical event. When healthy adult participants ( Ns = 11, 11, 12, respectively, in Experiments 1, 2, and 3) viewed 3D billiard-ball collisions demonstrating varying degrees of consistency with Newtonian mechanics, their perceptual judgments of postcollision trajectories were biased toward the Newtonian outcome. These results were consistent with a maximum-likelihood model of sensory integration in which perceived target motion following a collision is a reliability-weighted average of a sensory estimate and an internal prediction consistent with Newtonian mechanics.

 
more » « less
NSF-PAR ID:
10210670
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Psychological Science
Volume:
32
Issue:
2
ISSN:
0956-7976
Page Range / eLocation ID:
p. 280-291
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Prominent theories suggest that symptoms of schizophrenia stem from learning deficiencies resulting in distorted internal models of the world. To test these theories further, we used a visual statistical learning task known to induce rapid implicit learning of the stimulus statistics. In this task, participants are presented with a field of coherently moving dots and are asked to report the presented direction of the dots (estimation task), and whether they saw any dots or not (detection task). Two of the directions were more frequently presented than the others. In controls, the implicit acquisition of the stimuli statistics influences their perception in two ways: (i) motion directions are perceived as being more similar to the most frequently presented directions than they really are (estimation biases); and (ii) in the absence of stimuli, participants sometimes report perceiving the most frequently presented directions (a form of hallucinations). Such behaviour is consistent with probabilistic inference, i.e. combining learnt perceptual priors with sensory evidence. We investigated whether patients with chronic, stable, treated schizophrenia (n = 20) differ from controls (n = 23) in the acquisition of the perceptual priors and/or their influence on perception. We found that although patients were slower than controls, they showed comparable acquisition of perceptual priors, approximating the stimulus statistics. This suggests that patients have no statistical learning deficits in our task. This may reflect our patients’ relative wellbeing on antipsychotic medication. Intriguingly, however, patients experienced significantly fewer (P = 0.016) hallucinations of the most frequently presented directions than controls when the stimulus was absent or when it was very weak (prior-based lapse estimations). This suggests that prior expectations had less influence on patients’ perception than on controls when stimuli were absent or below perceptual threshold.

     
    more » « less
  2. Objective: To determine if a vestibular prosthesis could improve function in subjects with severe vestibular damage and could be used it as a scientific tool to investigate central vestibular processing. Background: Damage to the vestibular labyrinth is common and usually permanent. We therefore developed and tested a vestibular implant (VI) that is designed to mimic the information normally provided by the vestibular labyrinth to determine if we can reduce vestibular-mediated deficits and study temporal integration of sensory cues in the brain. Design/Methods: Monkeys had electrodes implanted in the semicircular canals of one ear and then severe bilateral vestibular damage was induced with aminoglycosides. Eye movements, perception, and balance were tested before and after vestibular damage and with the VI activated, which supplied head motion information to the brain via electrical stimulation delivered by the implanted electrodes. Humans also had electrode implantation (done in conjunction with a cochlear implant, CI) and they were tested on a temporal binding psychophysical task Results: Stimulation provided by VI in vestibulopathic monkeys improved their balance, perception of spatial orientation, and eye movement responses. Timing experiments in humans using CI and VI stimuli showed that unlike past experiments that used motion to generate the vestibular signal, CI and VI signals were received by the cerebral cortex with the same latency and were perceived as simultaneous, but this timing perception was highly sensitive to adaption. Conclusions: VI improves oculomotor, postural, and perceptual behavior in vestibulopathic monkeys and could prove to be an effective way to improve these functions in patients with permanent labyrinthine damage. Timing experiments show that when novel stimuli are used, the brain synthesizes them in accordance with their arrival at the cortex, but that experience can rapidly recalibrate this timing relationship, which may be why normal stimuli that are experienced habitually lack this characteristic. 
    more » « less
  3. The brain estimates hand position using vision and position sense (proprioception). The relationship between visual and proprioceptive estimates is somewhat flexible: visual information about the index finger can be spatially displaced from proprioceptive information, resulting in cross-sensory recalibration of the visual and proprioceptive unimodal position estimates. According to the causal inference framework, recalibration occurs when the unimodal estimates are attributed to a common cause and integrated. If separate causes are perceived, then recalibration should be reduced. Here we assessed visuo-proprioceptive recalibration in response to a gradual visuo-proprioceptive mismatch at the left index fingertip. Experiment 1 asked how frequently a 70 mm mismatch is consciously perceived compared to when no mismatch is present, and whether awareness is linked to reduced visuo-proprioceptive recalibration, consistent with causal inference predictions. However, conscious offset awareness occurred rarely. Experiment 2 tested a larger displacement, 140 mm, and asked participants about their perception more frequently, including at 70 mm. Experiment 3 confirmed that participants were unbiased at estimating distances in the 2D virtual reality display. Results suggest that conscious awareness of the mismatch was indeed linked to reduced cross-sensory recalibration as predicted by the causal inference framework, but this was clear only at higher mismatch magnitudes (70–140 mm). At smaller offsets (up to 70 mm), conscious perception of an offset may not override unconscious belief in a common cause, perhaps because the perceived offset magnitude is in range of participants’ natural sensory biases. These findings highlight the interaction of conscious awareness with multisensory processes in hand perception. 
    more » « less
  4. Synopsis

    Arboreal embryos of phyllomedusine treefrogs hatch prematurely to escape snake predation, cued by vibrations in their egg clutches during attacks. However, escape success varies between species, from ∼77% in Agalychnis callidryas to just ∼9% in A. spurrelli at 1 day premature. Both species begin responding to snake attacks at similar developmental stages, when vestibular mechanosensory function begins, suggesting that sensory ability does not limit the hatching response in A. spurrelli. Agalychnis callidryas clutches are thick and gelatinous, while A. spurrelli clutches are thinner and stiffer. We hypothesized that this structural difference alters the egg motion excited by attacks. Since vibrations excited by snakes must propagate through clutches to reach embryos, we hypothesized that the species difference in attack-induced hatching may reflect effects of clutch biomechanics on the cues available to embryos. Mechanics predicts that thinner, stiffer structures have higher free vibration frequencies, greater spatial attenuation, and faster vibration damping than thicker, more flexible structures. We assessed clutch biomechanics by embedding small accelerometers in clutches of both species and recording vibrations during standardized excitation tests at two distances from the accelerometer. Analyses of recorded vibrations showed that A. spurrelli clutches have higher free vibration frequencies and greater vibration damping than A. callidryas clutches. Higher frequencies elicit less hatching in A. callidryas, and greater damping could reduce the amount of vibration embryos can perceive. To directly test if clutch structure affects escape success in snake attacks, we transplanted A. spurrelli eggs into A. callidryas clutches and compared their escape rates with untransplanted, age-matched conspecific controls. We also performed reciprocal transplantation of eggs between pairs of A. callidryas clutches as a method control. Transplanting A. spurrelli embryos into A. callidryas clutches nearly tripled their escape success (44%) compared to conspecific controls (15%), whereas transplanting A. callidryas embryos into different A. callidryas clutches only increased escape success by 10%. At hatching competence, A. callidryas eggs are no longer jelly-encapsulated, while A. spurrelli eggs retain their jelly coat. Therefore, we compared the hatching response and latency of A. spurrelli in de-jellied eggs and their control, jelly-encapsulated siblings using manual egg-jiggling to simulate predation cues. Embryos in de-jellied eggs were more likely to hatch and hatched faster than control siblings. Together, our results suggest that the properties of parentally produced egg-clutch structures, including their vibration biomechanics, constrain the information available to A. spurrelli embryos and contribute to interspecific differences in hatching responses to predator attacks.

     
    more » « less
  5. Visually guided movements can show surprising accuracy even when the perceived three-dimensional (3D) shape of the target is distorted. One explanation of this paradox is that an evolutionarily specialized “vision-for-action” system provides accurate shape estimates by relying selectively on stereo information and ignoring less reliable sources of shape information like texture and shading. However, the key support for this hypothesis has come from studies that analyze average behavior across many visuomotor interactions where available sensory feedback reinforces stereo information. The present study, which carefully accounts for the effects of feedback, shows that visuomotor interactions with slanted surfaces are actually planned using the same cue-combination function as slant perception and that apparent dissociations can arise due to two distinct supervised learning processes: sensorimotor adaptation and cue reweighting. In two experiments, we show that when a distorted slant cue biases perception (e.g., surfaces appear flattened by a fixed amount), sensorimotor adaptation rapidly adjusts the planned grip orientation to compensate for this constant error. However, when the distorted slant cue is unreliable, leading to variable errors across a set of objects (i.e., some slants are overestimated, others underestimated), then relative cue weights are gradually adjusted to reduce the misleading effect of the unreliable cue, consistent with previous perceptual studies of cue reweighting. The speed and flexibility of these two forms of learning provide an alternative explanation of why perception and action are sometimes found to be dissociated in experiments where some 3D shape cues are consistent with sensory feedback while others are faulty. NEW & NOTEWORTHY When interacting with three-dimensional (3D) objects, sensory feedback is available that could improve future performance via supervised learning. Here we confirm that natural visuomotor interactions lead to sensorimotor adaptation and cue reweighting, two distinct learning processes uniquely suited to resolve errors caused by biased and noisy 3D shape cues. These findings explain why perception and action are often found to be dissociated in experiments where some cues are consistent with sensory feedback while others are faulty. 
    more » « less