skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 96-Well Oxygen Control Using a 3D-Printed Device
Oxygen concentration varies tremendously within the body and has proven to be a critical variable in cell differentiation, proliferation, and drug metabolism among many other physiological processes. Currently, researchers study the gas’s role in biology using low-throughput gas control incubators or hypoxia chambers in which all cells in a vessel are exposed to a single oxygen concentration. Here, we introduce a device that can simultaneously deliver 12 unique oxygen concentrations to cells in a 96-well plate and seamlessly integrate into biomedical research workflows. The device inserts into 96-well plates and delivers gas to the headspace, thus avoiding undesirable contact with media. This simple approach isolates each well using gas-tight pressure-resistant gaskets effectively creating 96 “mini-incubators”. Each of the 12 columns of the plate is supplied by a distinct oxygen concentration from a gas-mixing gradient generator supplied by two feed gases. The wells within each column are then supplied by an equal flow-splitting distribution network. Using equal feed flow rates, concentrations ranging from 0.6 to 20.5% were generated within a single plate. A549 lung carcinoma cells were then used to show that O2 levels below 9% caused a stepwise increase in cell death for cells treated with the hypoxia-activated anticancer drug tirapirizamine (TPZ). Additionally, the 96-well plate was further leveraged to simultaneously test multiple TPZ concentrations over an oxygen gradient and generate a three-dimensional (3D) dose−response landscape. The results presented here show how microfluidic technologies can be integrated into, rather than replace, ubiquitous biomedical labware allowing for increased throughput oxygen studies.  more » « less
Award ID(s):
1841509 1841473
PAR ID:
10210819
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Analytical Chemistry
ISSN:
0003-2700
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The use of oxygen by cells is an essential aspect of cell metabolism and a reliable indicator of viable and functional cells. Here, we report partial pressure oxygen (pO2) mapping of live cells as a reliable indicator of viable and metabolically active cells. For pO2imaging, we utilized trityl OX071-based pulse electron paramagnetic resonance oxygen imaging (EPROI), in combination with a 25 mT EPROI instrument, JIVA-25™, that provides 3D oxygen maps with high spatial, temporal, and pO2resolution. To perform oxygen imaging in an environment-controlled apparatus, we developed a novel multi-well-plate incubator-resonator (MWIR) system that could accommodate 3 strips from a 96-well strip-well plate and image the middle 12 wells noninvasively and simultaneously. The MWIR system was able to keep a controlled environment (temperature at 37 °C, relative humidity between 70%–100%, and a controlled gas flow) during oxygen imaging and could keep cells alive for up to 24 h of measurement, providing a rare previously unseen longitudinal perspective of 3D cell metabolic activities. The robustness of MWIR was tested using an adherent cell line (HEK-293 cells), a nonadherent cell line (Jurkat cells), a cell-biomaterial construct (Jurkat cells seeded in a hydrogel), and a negative control (dead HEK-293 cells). For the first time, we demonstrated that oxygen concentration in a multi-well plate seeded with live cells reduces exponentially with the increase in cell seeding density, even if the cells are exposed to incubator-like gas conditions. For the first time, we demonstrate that 3D, longitudinal oxygen imaging can be used to assess cells seeded in a hydrogel. These results demonstrate that MWIR-based EPROI is a versatile and robust method that can be utilized to observe the cell metabolic activity nondestructively, longitudinally, and in 3D. This approach may be useful for characterizing cell therapies, tissue-engineered medical products, and other advanced therapeutics. 
    more » « less
  2. Abstract Measurement of cell metabolism in moderate-throughput to high-throughput organ-on-chip (OOC) systems would expand the range of data collected for studying drug effects or disease in physiologically relevant tissue models. However, current measurement approaches rely on fluorescent imaging or colorimetric assays that are focused on endpoints, require labels or added substrates, and lack real-time data. Here, we integrated optical-based oxygen sensors in a high-throughput OOC platform and developed an approach for monitoring cell metabolic activity in an array of membrane bilayer devices. Each membrane bilayer device supported a culture of human renal proximal tubule epithelial cells on a porous membrane suspended between two microchannels and exposed to controlled, unidirectional perfusion and physiologically relevant shear stress for several days. For the first time, we measured changes in oxygen in a membrane bilayer format and used a finite element analysis model to estimate cell oxygen consumption rates (OCRs), allowing comparison with OCRs from other cell culture systems. Finally, we demonstrated label-free detection of metabolic shifts in human renal proximal tubule cells following exposure to FCCP, a drug known for increasing cell oxygen consumption, as well as oligomycin and antimycin A, drugs known for decreasing cell oxygen consumption. The capability to measure cell OCRs and detect metabolic shifts in an array of membrane bilayer devices contained within an industry standard microtiter plate format will be valuable for analyzing flow-responsive and physiologically complex tissues during drug development and disease research. 
    more » « less
  3. Enhanced drug testing efficiency has driven the prominence of high‐content and high‐throughput screening (HCHTS) in drug discovery and development. However, traditional HCHTS in well‐plates often lack complexity of in vivo conditions. 3D cell cultures, like cellular spheroids/organoids, offer a promising alternative by replicating in vivo conditions and improving the reliability of drug responses. Integrating spheroids/organoids into HCHTS requires strategies to ensure uniform formation, systemic function, and compatibility with analysis techniques. This study introduces an easy‐to‐fabricate, low‐cost, safe, and scalable approach to create a bioinert hydrogel‐based inverted colloidal crystal (BhiCC) framework for uniform and high‐yield spheroid cultivation. Highly uniform alginate microgels are fabricated and assembled into a colloidal crystal template with controllable contact area, creating engineered void spaces and interconnecting channels within agarose‐based BhiCC through the template degradation by alginate lyase and buffer. This results in a multi‐layered iCC domain, enabling the generation of in‐vitro 3D culture models with over 1000 spheroids per well in a 96‐well plate. The unique hexagonal‐close‐packed geometry of iCC structure enables HCHTS through conventional plate reader analysis and fluorescent microscopy assisted by house‐developed automated data processing algorithm. This advancement offers promising applications in tissue engineering, disease modeling, and drug development in biomedical research. 
    more » « less
  4. Changes in calcium concentration in cells are rapidly monitored in a high-throughput fashion with the use of intracellular, fluorescent, calcium-binding dyes and imaging instruments that can measure fluorescent emissions from up to 1,536 wells simultaneously. However, these instruments are much more expensive and can be challenging to maintain relative to widely available plate readers that scan wells individually. Described here is an optimized plate reader assay for use with an endothelial cell line (EA.hy926) to measure the protease-activated receptor (PAR)-driven activation of Gαq signaling and subsequent calcium mobilization using the calcium-binding dye Fluo-4. This assay has been used to characterize a range of PAR ligands, including the allosteric PAR1-targeting anti-inflammatory "parmodulin" ligands identified in the Dockendorff lab. This protocol obviates the need for an automated liquid handler and permits the medium-throughput screening of PAR ligands in 96-well plates and should be applicable to the study of other receptors that initiate calcium mobilization. 
    more » « less
  5. null (Ed.)
    High recurrence and metastasis to vital organs are the major characteristics of triple-negative breast cancer (TNBC). Low vascular oxygen tension promotes resistance to chemo- and radiation therapy. Neuropilin-1 (NRP-1) receptor is highly expressed on TNBC cells. The tumor-penetrating iRGD peptide interacts with the NRP-1 receptor, triggers endocytosis and transcytosis, and facilitates penetration. Herein, we synthesized a hypoxia-responsive diblock PLA–diazobenzene–PEG copolymer and prepared self-assembled hypoxia-responsive polymersomes (Ps) in an aqueous buffer. The iRGD peptide was incorporated into the polymersome structure to make hypoxia-responsive iRGD-conjugated polymersomes (iPs). Doxorubicin (DOX) was encapsulated in the polymersomes to prepare both targeted and nontargeted hypoxia-responsive polymersomes (DOX-iPs and DOX-Ps, respectively). The polymeric nanoparticles released less than 30% of their encapsulated DOX within 12 h under normoxic conditions (21% oxygen), whereas under hypoxia (2% oxygen) doxorubicin release remarkably increased to over 95%. The targeted polymersomes significantly decreased TNBC cells’ viability in monolayer and spheroid cultures under hypoxia compared to normoxia. Animal studies displayed that targeted polymersomes significantly diminished tumor growth in xenograft nude mice. Overall, the targeted polymersomes exhibited potent antitumor activity in monolayer, spheroid, and animal models of TNBC. With further developments, the targeted nanocarriers discussed here might have the translational potential as drug carriers for the treatment of TNBC. 
    more » « less