skip to main content


Title: Chloride load dynamics along channelized and intact reaches in a northeastern United States urban headwater stream
Abstract

Sodium chloride has long been used for winter deicing, although its legacy use has resulted in rising chloride concentrations in urban watersheds. Persistently high chloride levels impair drinking water resources and threaten the health of aquatic life and vegetation. In urban areas, chloride fate and transport is impacted by human modification of the environment, including increased impervious surface cover and disconnection of stream corridors from riparian groundwater. We couple continuous streamflow records with weekly chloride concentration data over two water years to create continuous chloride load estimates at three locations along a degraded, urban stream in upstate New York with contrasting channelized and intact reaches. Our results show that degraded reaches characterized by channelized, armored banks and minimal groundwater connection deliver chloride loads closer to chloride application rates in the surrounding watershed. In contrast, stream–groundwater interactions in intact reaches adjacent to riparian floodplains, including surface water losses to subsurface flow paths, result in stream chloride loads that are 50% less than those delivered from upstream channelized reaches. These findings show that longitudinal chloride load estimates along a stream channel can be valuable in identifying the timing and magnitude of chloride sources and sinks, which may be common but less apparent in urban environments.

 
more » « less
NSF-PAR ID:
10210866
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
16
Issue:
2
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 025001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Urbanization negatively impacts water quality in streams by reducing stream‐groundwater interactions, which can reduce a stream's capacity to naturally attenuate nitrate. Meadowbrook Creek, a first order urban stream in Syracuse, New York, has an inverse urbanization gradient, with heavily urbanized headwaters that are disconnected from the floodplain and downstream reaches that have intact riparian floodplains and connection to riparian aquifers. This system allows assessment of how stream‐groundwater interactions in urban streams impact the net sources and sinks of nitrate at the reach scale. We used continuous (15‐min) streamflow measurements and weekly grab samples at three gauging stations positioned longitudinally along the creek to develop continuous nitrate load estimates at the inlet and outlet of two contrasting reaches. Nitrate load estimates were determined using a USGS linear regression model, RLOADEST, and differences between loads at the inlet and outlet of contrasting reaches were used to quantify nitrate sink and source behaviour year‐round. We observed a nitrate load of 1.4 × 104 kg NO3per water year, on average, at the outlet of the urbanized reach while the nitrate load at the outlet of the downstream, connected reach was 1.0 × 104 kg NO3per water year, on average. We found the more heavily urbanized, hydrologically‐disconnected reach was a net source of nitrate regardless of season. In contrast, stream‐groundwater exchange caused the hydrologically connected reach to be both a source and sink for nitrate, depending on time of year. Both reaches alter nitrate source and sink behaviour at various spatiotemporal scales. Groundwater connection in the downstream, connected reach reduces annual nitrate loads and provides more opportunities for sources and sinks of nitrate year‐round than the hydrologically disconnected stream reach. Mechanisms include groundwater discharge into the stream with variable nitrate concentrations, surface‐water groundwater interactions that foster denitrification, and stream load loss to surrounding near‐stream aquifers. This study emphasizes how loads are important in understanding how stream‐groundwater interactions impact reach scale nitrate export in urban streams.

     
    more » « less
  2. Abstract

    Stream restoration is a popular approach for managing nitrogen (N) in degraded, flashy urban streams. Here, we investigated the long-term effects of stream restoration involving floodplain reconnection on riparian and in-stream N transport and transformation in an urban stream in the Chesapeake Bay watershed. We examined relationships between hydrology, chemistry, and biology using a Before/After-Control/Impact (BACI) study design to determine how hydrologic flashiness, nitrate (NO3) concentrations (mg/L), and N flux, both NO3and total N (kg/yr), changed after the restoration and floodplain hydrologic reconnection to its stream channel. We examined two independent surface water and groundwater data sets (EPA and USGS) collected from 2002–2012 at our study sites in the Minebank Run watershed. Restoration was completed during 2004 and 2005. Afterward, the monthly hydrologic flashiness index, based on mean monthly discharge, decreased over time from 2002 and 2008. However, from 2008–2012 hydrologic flashiness returned to pre-restoration levels. Based on the EPA data set, NO3concentration in groundwater and surface water was significantly less after restoration while the control site showed no change. DOC and NO3were negatively related before and after restoration suggesting C limitation of N transformations. Long-term trends in surface water NO3concentrations based on USGS surface water data showed downward trends after restoration at both the restored and control sites, whereas specific conductance showed no trend. Comparisons of NO3concentrations with Clconcentrations and specific conductance in both ground and surface waters suggested that NO3reduction after restoration was not due to dilution or load reductions from the watershed. Modeled NO3flux decreased post restoration over time but the rate of decrease was reduced likely due to failure of restoration features that facilitated N transformations. Groundwater NO3concentrations varied among stream features suggesting that some engineered features may be functionally better at creating optimal conditions for N retention. However, some engineered features eroded and failed post restoration thereby reducing efficacy of the stream restoration to reduce flashiness and NO3flux. N management via stream restoration will be most effective where flashiness can be reduced and DOC made available for denitrifiers. Stream restoration may be an important component of holistic watershed management including stormwater management and nutrient source control if stream restoration and floodplain reconnection can be done in a manner to resist the erosive effects of large storm events that can degrade streams to pre-restoration conditions. Long-term evolution of water quality functions in response to degradation of restored stream channels and floodplains from urban stressors and storms over time warrants further study, however.

     
    more » « less
  3. null (Ed.)
    Introduction: Latin America is a highly urbanized region, with most of its population living in cities and urban centers. While information about urban streams in Latin America is rather limited, streams are expected to experience similar environmental impacts and conservation issues as urban streams in parts of the globe, including habitat loss, channelization, sewage discharge, trash, and loss of riparian habitats. Objective: We surveyed a network of researchers from approximately 80% of the countries in Latin America to obtain information on the condition, state of knowledge, and threats to urban streams in the region. Methods: Most participants were reached via the Macrolatinos@ network (www.macrolatinos.net). Results: We obtained 104 responses from researchers in 18 of the 23 Latin American countries. Most urban streams are impacted or degraded, and inputs of contaminants and wastewater discharges were considered major drivers of stream degradation. Most respondents indicated that stream channelization is common, with some streams completely channelized or buried. Sewage and rainfall runoff management were identified as a major factor degrading streams, with most respondents suggesting that streams are a primary destination for wastewater discharge, much of which is untreated. Major limitations to urban stream conservation in Latin America are the result of limited ecological knowledge, lack of citizen interest or political will to protect them. There are isolated efforts to restore urban streams and riparian zones, but these are initial steps that need further development. Conclusions: Our research network of Latin American scientists proved to be a valuable tool to assess a large number of urban rivers in a relatively understudied region.  Urban streams in Latin America face a diversity of stressors and management challenges, and we propose three areas that would benefit from further research to improve our understanding and management of these systems: (1) Studies should focus on the watershed, rather than isolated reaches, (2) researchers should strive to attain a better understanding of ecosystem function and the services provided by urban streams to justify management and restoration efforts, and (3) studies that integrate economic models where downstream users pay for upstream protection and restoration could prove beneficial for many Latin American cities in attempting to address water conservation issues. 
    more » « less
  4. Abstract

    Determining the groundwater contribution of nonpoint source pollution at a watershed scale is a challenging issue. In this study, we utilized a top‐down approach to characterize representative groundwater response units (GRUs) based on land use and landscape position (e.g., upland, sideslope, or floodplain) in the 275‐km2Clear Creek Watershed, Iowa. Groundwater monitoring wells were then established along downslope transects in representative GRUs. This unique combination of top‐down/bottom‐up approaches allowed us to estimate groundwater pollutant loads at the watershed scale with minimal monitoring. For the 2015 study period, results indicated that more groundwater recharge occurred in the floodplain (404 mm) compared to the uplands or sideslopes (281 and 165 mm, respectively), irrespective of land use. Recharge in the floodplains consisted of 37% of the annual precipitation, whereas upland wells averaged 26% and sideslopes averaged 15% of the annual precipitation. Less recharge was found to occur beneath perennial grass compared to row crop and urbanized areas. Baseflow discharge accounted for 69% of the total NO3‐N exported from the Clear Creek Watershed, with row crop areas contributing approximately 95% of the annual load. Orthophosphorus (OP) yields were approximately 0.72 kg/ha beneath urban and suburban areas, three times higher than those in row crop or perennial areas. Urban and suburban areas accounted for 21.4% of groundwater orthophosphorus and chloride loads in the watershed compared to only 8.5% of the land area. Overall, the groundwater load allocation model for baseflow nutrient discharge to Clear Creek can be used to target future nonpoint source load reduction strategies at the watershed scale. The use of GRUs can pinpoint better areas of concern for controlling nutrient loads.

     
    more » « less
  5. Abstract

    Riparian forests are essential for stream ecological processes in arid and semiarid regions, however, they are often highly altered by the rapid expansion of urban areas. To maintain riparian ecosystems services, it is important to better understand the effects of urbanization on riparian forests. We quantified the three‐dimensional (3D) structure and woody species composition of a riparian corridor in Utah, USA, to evaluate patterns of vegetation along stream reaches that flow through distinct hydrologic domains (with gaining and losing reaches) and through a rapid rural‐to‐urban gradient. By using LiDAR imaging and field observations, we explore the extent to which the riparian vegetation structure follows patterns of topography linked to energy and water subsidies and patterns of human influence along the stream. Whereas natural reaches of Red Butte Creek were characterized by native vegetation and typical riparian species (e.g.,Betula occidentalis), urbanized reaches had higher numbers of introduced plants (e.g.,Acer platanoides) and more upland species (e.g.,Quercus gambelii). Urban reaches were also characterized by exceptionally high trees (>18 m) in older residential neighbourhoods. In the natural area, canopy height was negatively correlated with height above the river (HAR). Additionally, we found higher cover and taller canopies on north‐facing aspects. These results show that LiDAR data, in combination with ground observations, can reveal strong influences of hydrology as well as land use in different canopy layers of riparian forests. We suggest that the decision making of individual landowners shapes vegetation beyond natural hydrological patterns, with implications for riparian forest management and restoration.

     
    more » « less