skip to main content


Title: A new waveform analysis technique to extract good energy and position resolution from a dual-axis duo-lateral position-sensitive detector
Award ID(s):
1659847
NSF-PAR ID:
10210970
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume:
985
Issue:
C
ISSN:
0168-9002
Page Range / eLocation ID:
164674
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Jokes, cartoons, songs, videos, and quotes can be useful ways to engage students in discussion and learning key concepts about polling.

     
    more » « less
  2. null (Ed.)
    Abstract Studying the human brain during interpersonal interaction allows us to answer many questions related to motor control and cognition. For instance, what happens in the brain when two people walking side by side begin to change their gait and match cadences? Adapted from the neuroimaging techniques used in single-brain measurements, hyperscanning (HS) is a technique used to measure brain activity from two or more individuals simultaneously. Thus far, HS has primarily focused on healthy participants during social interactions in order to characterize inter-brain dynamics. Here, we advocate for expanding the use of this electroencephalography hyperscanning (EEG-HS) technique to rehabilitation paradigms in individuals with neurological diagnoses, namely stroke, spinal cord injury (SCI), Parkinson’s disease (PD), and traumatic brain injury (TBI). We claim that EEG-HS in patient populations with impaired motor function is particularly relevant and could provide additional insight on neural dynamics, optimizing rehabilitation strategies for each individual patient. In addition, we discuss future technologies related to EEG-HS that could be developed for use in the clinic as well as technical limitations to be considered in these proposed settings. 
    more » « less
  3. null (Ed.)

    We present a new method to improve the representational power of the features in Convolutional Neural Networks (CNNs). By studying traditional image processing methods and recent CNN architectures, we propose to use positional information in CNNs for effective exploration of feature dependencies. Rather than considering feature semantics alone, we incorporate spatial positions as an augmentation for feature semantics in our design. From this vantage, we present a Position-Aware Recalibration Module (PRM in short) which recalibrates features leveraging both feature semantics and position. Furthermore, inspired by multi-head attention, our module is capable of performing multiple recalibrations where results are concatenated as the output. As PRM is efficient and easy to implement, it can be seamlessly integrated into various base networks and applied to many position-aware visual tasks. Compared to original CNNs, our PRM introduces a negligible number of parameters and FLOPs, while yielding better performance. Experimental results on ImageNet and MS COCO benchmarks show that our approach surpasses related methods by a clear margin with less computational overhead. For example, we improve the ResNet50 by absolute 1.75% (77.65% vs. 75.90%) on ImageNet 2012 validation dataset, and 1.5%~1.9% mAP on MS COCO validation dataset with almost no computational overhead. Codes are made publicly available.

     
    more » « less