During language processing, people make rapid use of contextual information to promote comprehension of upcoming words. When new words are learned implicitly, information contained in the surrounding context can provide constraints on their possible meaning. In the current study, EEG was recorded as participants listened to a series of three sentences, each containing an identical target pseudoword, with the aim of using contextual information in the surrounding language to identify a meaning representation for the novel word. In half of the trials, sentences were semantically coherent so that participants could develop a single representation for the novel word that fit all contexts. Other trials contained unrelated sentence contexts so that meaning associations were not possible. We observed greater theta band enhancement over the left hemisphere across central and posterior electrodes in response to pseudowords processed across semantically related compared to unrelated contexts. Additionally, relative alpha and beta band suppression was increased prior to pseudoword onset in trials where contextual information more readily promoted pseudoword meaning associations. Under the hypothesis that theta enhancement indexes processing demands during lexical access, the current study provides evidence for selective online memory retrieval for novel words learned implicitly in a spoken context.
A longstanding debate has surrounded the role of the motor system in speech perception, but progress in this area has been limited by tasks that only examine isolated syllables and conflate decision-making with perception. Using an adaptive task that temporally isolates perception from decision-making, we examined an EEG signature of motor activity (sensorimotor μ/beta suppression) during the perception of auditory phonemes, auditory words, audiovisual words, and environmental sounds while holding difficulty constant at two levels (Easy/Hard). Results revealed left-lateralized sensorimotor μ/beta suppression that was related to perception of speech but not environmental sounds. Audiovisual word and phoneme stimuli showed enhanced left sensorimotor μ/beta suppression for correct relative to incorrect trials, while auditory word stimuli showed enhanced suppression for incorrect trials. Our results demonstrate that motor involvement in perception is left-lateralized, is specific to speech stimuli, and it not simply the result of domain-general processes. These results provide evidence for an interactive network for speech perception in which dorsal stream motor areas are dynamically engaged during the perception of speech depending on the characteristics of the speech signal. Crucially, this motor engagement has different effects on the perceptual outcome depending on the lexicality and modality of the speech stimulus.
- Publication Date:
- NSF-PAR ID:
- 10211127
- Journal Name:
- Communications Biology
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2399-3642
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Bizley, Jennifer K. (Ed.)Brain asymmetry in the sensitivity to spectrotemporal modulation is an established functional feature that underlies the perception of speech and music. The left auditory cortex (ACx) is believed to specialize in processing fast temporal components of speech sounds, and the right ACx slower components. However, the circuit features and neural computations behind these lateralized spectrotemporal processes are poorly understood. To answer these mechanistic questions we use mice, an animal model that captures some relevant features of human communication systems. In this study, we screened for circuit features that could subserve temporal integration differences between the left and right ACx. We mapped excitatory input to principal neurons in all cortical layers and found significantly stronger recurrent connections in the superficial layers of the right ACx compared to the left. We hypothesized that the underlying recurrent neural dynamics would exhibit differential characteristic timescales corresponding to their hemispheric specialization. To investigate, we recorded spike trains from awake mice and estimated the network time constants using a statistical method to combine evidence from multiple weak signal-to-noise ratio neurons. We found longer temporal integration windows in the superficial layers of the right ACx compared to the left as predicted by stronger recurrent excitation. Our studymore »
-
The extent that articulatory information embedded in incoming speech contributes to the formation of new perceptual categories for speech sounds has been a matter of discourse for decades. It has been theorized that the acquisition of new speech sound categories requires a network of sensory and speech motor cortical areas (the “dorsal stream”) to successfully integrate auditory and articulatory information. However, it is possible that these brain regions are not sensitive specifically to articulatory information, but instead are sensitive to the abstract phonological categories being learned. We tested this hypothesis by training participants over the course of several days on an articulable non-native speech contrast and acoustically matched inarticulable nonspeech analogues. After reaching comparable levels of proficiency with the two sets of stimuli, activation was measured in fMRI as participants passively listened to both sound types. Decoding of category membership for the articulable speech contrast alone revealed a series of left and right hemisphere regions outside of the dorsal stream that have previously been implicated in the emergence of non-native speech sound categories, while no regions could successfully decode the inarticulable nonspeech contrast. Although activation patterns in the left inferior frontal gyrus (IFG), the middle temporal gyrus (MTG), and themore »
-
Bats have evolved unique methods of perception to navigate and catch prey using ultrasonic sounds. It has been observed that the greater horseshoe bat (Rhinolophus ferrumequinum) rapidly move their pinna and noseleaf structures in coordination with pulse emission and echo reception during echolocation, with everything occurring on a 100ms time scale. Sensorimotor integration is not uncommon in neural systems but bats provide a unique case for auditory processing coinciding motion in the periphery. We have developed biomimetic robotic models to replicate the dynamic emission and reception elements of bat echolocation; current data have shown these dynamics introduce time-variant effects which encode information to inform object identification and location. We have planned experiments to understand how motor and auditory systems are integrated, which will be done by recording midbrain responses interacting with stimuli. These recordings will consist of field potential measurements taken from the inferior and superior colliculi; we hope this work will provide physiological events associated with sensorimotor integration for echolocation.
-
Abstract Accurate integration of sensory inputs and motor commands is essential to achieve successful behavioral goals. A robust model of sensorimotor integration is the pitch perturbation response, in which speakers respond rapidly to shifts of the pitch in their auditory feedback. In a previous study, we demonstrated abnormal sensorimotor integration in patients with Alzheimer’s disease (AD) with an abnormally enhanced behavioral response to pitch perturbation. Here we examine the neural correlates of the abnormal pitch perturbation response in AD patients, using magnetoencephalographic imaging. The participants phonated the vowel /α/ while a real-time signal processor briefly perturbed the pitch (100 cents, 400 ms) of their auditory feedback. We examined the high-gamma band (65–150 Hz) responses during this task. AD patients showed significantly reduced left prefrontal activity during the early phase of perturbation and increased right middle temporal activity during the later phase of perturbation, compared to controls. Activity in these brain regions significantly correlated with the behavioral response. These results demonstrate that impaired prefrontal modulation of speech-motor-control network and additional recruitment of right temporal regions are significant mediators of aberrant sensorimotor integration in patients with AD. The abnormal neural integration mechanisms signify the contribution of cortical network dysfunction to cognitive and behavioral deficits in AD.