skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Concurrent measurement of nitrate and ammonium in water and soil samples using ion‐selective electrodes: Tackling sensitivity and precision issues
In this paper, we demonstrate the suitability, sensitivity, and precision of low‐cost and easy‐to‐use ion‐selective electrodes (ISEs) for concurrent detection of NH4+ and NO3‐ in soil and water by technical and non‐technical end‐users to enable efficient soil and water management exposed to chronic reactive nitrogen loading. We developed a simplified methodology for sample preparation followed by the demonstration of an analytical methodology resulting in improvements of sensitivity and precision of ISEs. Herein, we compared and contrasted ISEs with traditional laboratory‐based technique such as Flow Injection Analysis (FIA) and portable colorimetric assay followed by comparisons of linear regression and Bayesian nonlinear calibration approaches applied on both direct potentiometry and standard addition modes of analysis in terms of in‐field applications and improvement of sensitivity and precision. The ISEs were validated for sensing on a range of ambient soil and water samples representing a range of NH4+ and NO3‐ concentrations from pristine to excessive saturation conditions. Herein developed methodology showed excellent agreement with lab‐based and portable analytical techniques while demonstrating improvements in precision and sensitivity analysis illustrated by a decrease in confidence intervals by 50‐60%. We also demonstrated the utilization of the entire ISE response curve thus removing the biases originating from linear approximation which is often currently employed. Therefore, we show that ISEs are robust yet low cost and an easy to use technology that can enable high‐frequency measurement of mineral N and help to improve our understanding of N transformation processes as influenced by soil management, fertilization, land use, and climate change.  more » « less
Award ID(s):
1935555
PAR ID:
10211147
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Analytical Science Advances
ISSN:
2628-5452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We fabricated and evaluated multiplexed ion-selective electrodes (ISEs) by modifying printed circuit board (PCB). The multiplexed sensor consisted of all-solid-state K+ and NO3- ISEs, together with a Ag/AgCl reference. The sensor was further embedded in a microfluidic microchannel for in-line continuous analysis, and was characterized for up to one week of operation. Both ISEs showed a near-Nernstian response (~52 mV/dec) and reasonable stabilities (baseline drift ~2.9 mV/day). The sensor provides a versatile and low-cost tool for monitoring concentrations of different ions in many biomedical, environmental and agricultural applications. 
    more » « less
  2. Earth System Models (ESMs) have implemented nitrogen (N) cycles to account for N limitation on terrestrial carbon uptake. However, representing inputs, losses and recycling of N in ESMs is challenging. Here, we use global rates and ratios of key soil N fluxes, including nitrification, denitrification, mineralization, leaching, immobilization and plant uptake (both NH4+ and NO3-), from the literature to evaluate the N cycles in the land model components of two ESMs. The two land models evaluated here, ELMv1-ECA and CLM5.0, originated from a common model but have diverged in their representation of plant/microbe competition for soil N. The models predict similar global rates of gross primary productivity (GPP) but have ~2 to 3-fold differences in their underlying global mineralization, immobilization, plant N uptake, nitrification and denitrification fluxes. Both models dramatically underestimate the immobilization of NO3- by soil bacteria compared to literature values and predict dominance of plant uptake by a single form of mineral nitrogen (NO3- for ELM, with regional exceptions, and NH4+ for CLM5.0). CLM5.0 strongly underestimates the global ratio of gross nitrification:gross mineralization and both models likely substantially underestimate the ratio of nitrification:denitrification. Few experimental data exist to evaluate this last ratio, in part because nitrification and denitrification are quantified with different techniques and because denitrification fluxes are difficult to measure at all. More observational constraints on soil nitrogen fluxes like nitrification and denitrification, as well as greater scrutiny of the functional impact of introducing separate NH4+ and NO3- pools into ESMs, could help improve confidence in present and future simulations of N limitation on the carbon cycle. 
    more » « less
  3. It is essential to identify the dominant flow paths, hot spots and hot periods of hydrological nitrate-nitrogen (NO3-N) losses for developing nitrogen loads reduction strategies in agricultural watersheds. Coupled biogeochemical transformations and hydrological connectivity regulate the spatiotemporal dynamics of water and NO3-N export along surface and subsurface flows. However, modeling performance is usually limited by the oversimplification of natural and human-managed processes and insufficient representation of spatiotemporally varied hydrological and biogeochemical cycles in agricultural watersheds. In this study, we improved a spatially distributed process-based hydro-ecological model (DLEM-catchment) and applied the model to four tile-drained catchments with mixed agricultural management and diverse landscape in Iowa, Midwestern US. The quantitative statistics show that the improved model well reproduced the daily and monthly water discharge, NO3-N concentration and loading measured from 2015 to 2019 in all four catchments. The model estimation shows that subsurface flow (tile flow + lateral flow) dominates the discharge (70%-75%) and NO3-N loading (77%-82%) over the years. However, the contributions of tile drainage and lateral flow vary remarkably among catchments due to different tile-drained area percentages and the presence of farmed potholes (former depressional wetlands that have been drained for agricultural production). Furthermore, we found that agricultural management (e.g. tillage and fertilizer management) and catchment characteristics (e.g. soil properties, farmed potholes, and tile drainage) play important roles in predicting the spatial distributions of NO3-N leaching and loading. The simulated results reveal that the model improvements in representing water retention capacity (snow processes, soil roughness, and farmed potholes) and tile drainage improved model performance in estimating discharge and NO3-N export at a daily time step, while improvement of agricultural management mainly impacts NO3-N export prediction. This study underlines the necessity of characterizing catchment properties, agricultural management practices, flow-specific NO3-N movement, and spatial heterogeneity of NO3-N fluxes for accurately simulating water quality dynamics and predicting the impacts of agricultural conservation nutrient reduction strategies. 
    more » « less
  4. The composition of bioretention soil media (BSM) is among the most critical design attributes contributing to the water quality performance of bioretention systems, as various amendments may increase the capacity for chemical sorption of certain nutrient pollutants. We investigated the spent lime (a calcium-based water treatment residual) as BSM amendments for nutrient retention. The study was conducted in two parts: the first was a field-based mesocosm experiment in which we assessed the effect of spent lime amendments on leachate nutrient concentration for treatments receiving different levels of phosphorus and nitrogen loading (simulated by different levels of compost added to the substrate). The second was a laboratory study comparing various levels of spent lime and coir on leachate nutrient concentration at two different simulated loading rates. Effluent water was collected and analyzed for PO43−, NH4+ and NO3− concentrations in the field and lab. Spent lime significantly reduced leachate PO43− concentrations (upwards of 50%) in both the field and lab mesocosm studies compared to treatments without spent lime. Reductions in NH4+ concentrations were also observed due to spent lime but with variable significance across the different compost levels, whereas NO3− concentrations were higher in plots with spent lime than plots without spent lime. In the lab, columns with coir had significantly higher leachate PO43− concentrations compared to spent lime-treated columns, however, leachate NH4+ and NO3− concentrations did not significantly differ between treatments at the same compost levels. This study shows that spent lime, which is a waste product, is effective in significantly reducing leachate PO43− concentrations from BSM, while be a cost-effective substitute to engineered proprietary media that is expensive to acquire; however, future studies must also evaluate its potential for clogging. 
    more » « less
  5. Abstract. Large sample datasets are transforming the catchment sciences, but there are few off-the-shelf stream water chemistry datasets with complementary atmospheric deposition, streamflow, meteorology, and catchment physiographic attributes. The existing CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) dataset includes data on topography, climate, streamflow, land cover, soil, and geology across the continental US. With CAMELS-Chem, we pair these existing attribute data for 516 catchments with atmospheric deposition data from the National Atmospheric Deposition Program and water chemistry and instantaneous discharge data from the US Geological Survey over the period from 1980 through 2018 in a relational database and corresponding dataset. The data include 18 common stream water chemistry constituents: Al, Ca, Cl, dissolved organic carbon, total organic carbon, HCO3, K, Mg, Na, total dissolved N, total organic N, NO3, dissolved oxygen, pH (field and lab), Si, SO4, and water temperature. Annual deposition loads and concentrations include hydrogen, NH4, NO3, total inorganic N, Cl, SO4, Ca, K, Mg, and Na. We demonstrate that CAMELS-Chem water chemistry data are sampled effectively across climates, seasons, and discharges for trend analysis and highlight the coincident sampling of stream constituents for process-based understanding. To motivate their use by the larger scientific community across a variety of disciplines, we show examples of how these publicly available datasets can be applied to trend detection and attribution, biogeochemical process understanding, and new hypothesis generation via data-driven techniques. 
    more » « less