Abstract. As wildfires intensify and fire seasons lengthen across the western US, the development of models that can predict smoke plume concentrations and track wildfire-induced air pollution exposures has become critical. Wildfire smoke plume height is a key indicator of the vertical placement of plume mass emitted from wildfire-related aerosol sources in climate and air quality models. With advancements in Earth observation (EO) satellites, spaceborne products for aerosol layer height or plume injection height have recently emerged with increased global-scale spatiotemporal resolution. However, to evaluate column radiative effects and refine satellite algorithms, vertical profiles of regionally representative aerosol properties from wildfires need to be measured directly. In this study, we conducted the first comprehensive evaluation of four passive satellite remote-sensing techniques specifically designed for retrieving plume height. We compared these satellite products with the airborne Wyoming Cloud Lidar (WCL) measurements during the 2018 Biomass Burning Flux Measurements of Trace Gases and Aerosols (BB-FLUX) field campaign in the western US. Two definitions, namely, “plume top” and “extinction-weighted mean plume height”, were used to derive the representative heights of wildfire smoke plumes, based on the WCL-derived vertical aerosol extinction coefficient profiles. Using these two definitions, we performed a comparative analysis of multisource satellite-derived plume height products for wildfire smoke. We provide a discussion related to which satellite product is most appropriate for determining plume height characteristics near a fire event or estimating downwind plume rise equivalent height, under multiple aerosol loadings. Our findings highlight the importance of understanding the sensitivity of different passive remote-sensing techniques on space-based wildfire smoke plume height observations, in order to resolve ambiguity surrounding the concept of “effective smoke plume height”. As additional aerosol-observing satellites are planned in the coming years, our results will inform future remote-sensing missions and EO satellite algorithm development. This bridges the gap between satellite observations and plume rise modeling to further investigate the vertical distribution of wildfire smoke aerosols.
more »
« less
Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US
Abstract. During the first phase of the Biomass Burn Operational Project (BBOP) fieldcampaign, conducted in the Pacific Northwest, the DOE G-1 aircraft was usedto follow the time evolution of wildfire smoke from near the point ofemission to locations 2–3.5 h downwind. In nine flights we maderepeated transects of wildfire plumes at varying downwind distances andcould thereby follow the plume's time evolution. On average there was littlechange in dilution-normalized aerosol mass concentration as a function ofdownwind distance. This consistency hides a dynamic system in which primaryaerosol particles are evaporating and secondary ones condensing. Organicaerosol is oxidized as a result. On all transects more than 90 % ofaerosol is organic. In freshly emitted smoke aerosol, NH4+ isapproximately equivalent to NO3. After 2 h of daytime aging, NH4+ increased and is approximately equivalent tothe sum of Cl, SO42, and NO3. Particle size increased with downwind distance,causing particles to be more efficient scatters. Averaged over nine flights,mass scattering efficiency (MSE) increased in ∼ 2 h by 56 % and doubled in one flight. Mechanisms for redistributing mass from small to large particles are discussed. Coagulation is effective at movingaerosol from the Aitken to accumulation modes but yields only a minor increase in MSE. As absorption remained nearly constant with age, the timeevolution of single scatter albedo was controlled by age-dependentscattering. Near-fire aerosol had a single scatter albedo (SSA) of 0.8–0.9. After 1 to 2 h of aging SSAs were typically 0.9 and greater. Assuming global-average surface and atmospheric conditions, the observedage dependence in SSA would change the direct radiative effect of a wildfire plume from near zero near the fire to a cooling effect downwind.
more »
« less
- PAR ID:
- 10211174
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 20
- Issue:
- 21
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 13319 to 13341
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quantifying the variable impacts of wildfire smoke on ozone air quality is challenging. Here we use airborne measurements from the 2018 Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE-CAN) to parameterize emissions of reactive nitrogen (NOy) from wildfires into peroxyacetyl nitrate (PAN; 37%), NO3− (27%), and NO (36%) in a global chemistry-climate model with 13 km spatial resolution over the contiguous US. The NOy partitioning, compared with emitting all NOy as NO, reduces model ozone bias in near-fire smoke plumes sampled by the aircraft and enhances ozone downwind by 5–10 ppbv when Canadian smoke plumes travel to Washington, Utah, Colorado, and Texas. Using multi-platform observations, we identify the smoke-influenced days with daily maximum 8-hr average (MDA8) ozone of 70–88 ppbv in Kennewick, Salt Lake City, Denver and Dallas. On these days, wildfire smoke enhanced MDA8 ozone by 5–25 ppbv, through ozone produced remotely during plume transport and locally via interactions of smoke plume with urban emissions.more » « less
-
Abstract. In mid-August through mid-September of 2017 a major wildfire smoke and hazeepisode strongly impacted most of the NW US and SW Canada. During this periodour ground-based site in Missoula, Montana, experienced heavy smoke impactsfor ∼ 500 h (up to 471 µg m−3 hourly averagePM2.5). We measured wildfire trace gases, PM2.5 (particulate matter≤2.5 µm in diameter), and black carbon and submicron aerosolscattering and absorption at 870 and 401 nm. This may be the most extensivereal-time data for these wildfire smoke properties to date. Our range oftrace gas ratios for ΔNH3∕ΔCO and ΔC2H4∕ΔCO confirmed that the smoke from mixed, multiple sourcesvaried in age from ∼ 2–3 h to ∼ 1–2 days. Our study-averageΔCH4∕ΔCO ratio (0.166±0.088) indicated a largecontribution to the regional burden from inefficient smoldering combustion.Our ΔBC∕ΔCO ratio (0.0012±0.0005) for our groundsite was moderately lower than observed in aircraft studies (∼ 0.0015)to date, also consistent with a relatively larger contribution fromsmoldering combustion. Our ΔBC∕ΔPM2.5 ratio (0.0095±0.0003) was consistent with the overwhelmingly non-BC (black carbon),mostly organic nature of the smoke observed in airborne studies of wildfiresmoke to date. Smoldering combustion is usually associated with enhanced PMemissions, but our ΔPM2.5∕ΔCO ratio (0.126±0.002)was about half the ΔPM1.0∕ΔCO measured in freshwildfire smoke from aircraft (∼ 0.266). Assuming PM2.5 isdominated by PM1, this suggests that aerosol evaporation, at least nearthe surface, can often reduce PM loading and its atmospheric/air-qualityimpacts on the timescale of several days. Much of the smoke was emitted latein the day, suggesting that nighttime processing would be important in theearly evolution of smoke. The diurnal trends show brown carbon (BrC),PM2.5, and CO peaking in the early morning and BC peaking in the earlyevening. Over the course of 1 month, the average single scattering albedo forindividual smoke peaks at 870 nm increased from ∼ 0.9 to ∼ 0.96.Bscat401∕Bscat870 was used as a proxy for the size and“photochemical age” of the smoke particles, with this interpretation beingsupported by the simultaneously observed ratios of reactive trace gases toCO. The size and age proxy implied that the Ångström absorptionexponent decreased significantly after about 10 h of daytime smoke aging,consistent with the only airborne measurement of the BrC lifetime in anisolated plume. However, our results clearly show that non-BC absorption canbe important in “typical” regional haze and moderately aged smoke, with BrCostensibly accounting for about half the absorption at 401 nm on average forour entire data set.more » « less
-
Abstract Wildfires in the western United States are large sources of particulate matter, and the area burned by wildfires is predicted to increase in the future. Some particles released from wildfires can affect cloud formation by serving as ice‐nucleating particles (INPs). INPs have numerous impacts on cloud radiative properties and precipitation development. Wildfires are potentially important sources of INPs, as indicated from previous measurements, but their abundance in the free troposphere has not been quantified. The Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen campaign sampled free tropospheric immersion‐freezing INPs from smoke plumes near their source and downwind, along with widespread aged smoke. The results indicate an enhancement of INPs in smoke plumes relative to out‐of‐plume background air, but the magnitude of enhancement was both temperature and fire dependent. The majority of INPs were inferred to be predominately organic in composition with some contribution from biological sources at modest super cooling, and contributions from minerals at deeper super cooling. A fire involving primarily sagebrush shrub land and aspen forest fuels had the highest INP concentrations measured in the campaign, which is partially attributed to the INP characteristics of lofted, uncombusted plant material. Electron microscopy analysis of INPs also indicated tar balls present in this fire. Parameterization of the plume INP data on a per‐unit‐aerosol surface area basis confirmed that smoke is not an efficient source of INPs. Nevertheless, the high numbers of particles released from, and ubiquity of western US wildfires in summertime, regionally elevate INP concentrations in the free troposphere.more » « less
-
Abstract During the summer of 2018, the upward-pointing Wyoming Cloud Lidar (WCL) was deployed on board the University of Wyoming King Air (UWKA) research aircraft for the Biomass Burning Flux Measurements of Trace Gases and Aerosols (BB-FLUX) field campaign. This paper describes the generation of calibrated attenuated backscatter coefficients and aerosol extinction coefficients from the WCL measurements. The retrieved aerosol extinction coefficients at the flight level strongly correlate (correlation coefficient, rr > 0.8) with in situ aerosol concentration and carbon monoxide (CO) concentration, providing a first-order estimate for converting WCL extinction coefficients into vertically resolved CO and aerosol concentration within wildfire smoke plumes. The integrated CO column concentrations from the WCL data in nonextinguished profiles also correlate (rr = 0.7) with column measurements by the University of Colorado Airborne Solar Occultation Flux instrument, indicating the validity of WCL-derived extinction coefficients. During BB-FLUX, the UWKA sampled smoke plumes from more than 20 wildfires during 35 flights over the western United States. Seventy percent of flight time was spent below 3 km above ground level (AGL) altitude, although the UWKA ascended up to 6 km AGL to sample the top of some deep smoke plumes. The upward-pointing WCL observed a nearly equal amount of thin and dense smoke below 2 km and above 5 km due to the flight purpose of targeted fresh fire smoke. Between 2 and 5 km, where most of the wildfire smoke resided, the WCL observed slightly more thin smoke than dense smoke due to smoke spreading. Extinction coefficients in dense smoke were 2–10 times stronger, and dense smoke tended to have larger depolarization ratio, associated with irregular aerosol particles.more » « less
An official website of the United States government

