skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulating the forest fire plume dispersion, chemistry, and aerosol formation using SAM-ASP version 1.0
Abstract. Biomass burning is a major source of trace gases andaerosols that can ultimately impact health, air quality, and climate.Global and regional-scale three-dimensional Eulerian chemical transportmodels (CTMs) use estimates of the primary emissions from fires and canunphysically mix them across large-scale grid boxes, leading to incorrectestimates of the impact of biomass burning events. On the other hand,plume-scale process models allow for explicit simulation and examination ofthe chemical and physical transformations of trace gases and aerosols withinbiomass burning smoke plumes, and they may be used to developparameterizations of this aging process for coarser grid-scale models. Herewe describe the coupled SAM-ASP plume-scale process model, which consists ofcoupling the large-eddy simulation model, the System for AtmosphericModelling (SAM), with the detailed gas and aerosol chemistry model, theAerosol Simulation Program (ASP). We find that the SAM-ASP version 1.0 modelis able to correctly simulate the dilution of CO in a California chaparralsmoke plume, as well as the chemical loss of NOx, HONO, and NH3within the plume, the formation of PAN and O3, the loss of OA, and thechange in the size distribution of aerosols as compared to measurements andprevious single-box model results. The newly coupled model is able tocapture the cross-plume vertical and horizontal concentration gradients asthe fire plume evolves downwind of the emission source. The integration andevaluation of SAM-ASP version 1.0 presented here will support thedevelopment of parameterizations of near-source biomass burning chemistrythat can be used to more accurately simulate biomass burning chemical andphysical transformations of tracegases and aerosols within coarser grid-scale CTMs.  more » « less
Award ID(s):
1950327 1950333
PAR ID:
10211178
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
13
Issue:
9
ISSN:
1991-9603
Page Range / eLocation ID:
4579 to 4593
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The ocean’s major circulation system, the Atlantic Meridional Overturning Circulation (AMOC), is slowing down. Such weakening is consistent with warming associated with increasing greenhouse gases, as well as with recent decreases in industrial aerosol pollution. The impact of biomass burning aerosols on the AMOC, however, remains unexplored. Here, we use the Community Earth System Model version 1 Large Ensemble to quantify the impact of both aerosol types on the AMOC. Despite relatively small changes in North Atlantic biomass burning aerosols, significant AMOC evolution occurs, including weakening from 1920 to ~1970 followed by AMOC strengthening. These changes are largely out of phase relative to the corresponding AMOC evolution under industrial aerosols. AMOC responses are initiated by thermal changes in sea surface density flux due to altered shortwave radiation. An additional dynamical mechanism involving the North Atlantic sea-level pressure gradient is important under biomass-burning aerosols. AMOC-induced ocean salinity flux convergence acts as a positive feedback. Our results show that biomass-burning aerosols reinforce early 20th-century AMOC weakening associated with greenhouse gases and also partially mute industrial aerosol impacts on the AMOC. Recent increases in wildfires suggest biomass-burning aerosols may be an important driver of future AMOC variability. 
    more » « less
  2. Abstract. Chamber oxidation experiments conducted at the Fire Sciences Laboratory in 2016 are evaluated to identify important chemical processes contributing to the hydroxy radical (OH) chemistry of biomass burning non-methane organic gases (NMOGs). Based on the decay of primary carbon measured by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS), it is confirmed that furans and oxygenated aromatics are among the NMOGs emitted from western United States fuel types with the highest reactivities towards OH. The oxidation processes and formation of secondary NMOG masses measured by PTR-ToF-MS and iodide-clustering time-of-flight chemical ionization mass spectrometry (I-CIMS) is interpreted using a box model employing a modified version of the Master Chemical Mechanism (v. 3.3.1) that includes the OH oxidation of furan, 2-methylfuran, 2,5-dimethylfuran, furfural, 5-methylfurfural, and guaiacol. The model supports the assignment of major PTR-ToF-MS and I-CIMS signals to a series of anhydrides and hydroxy furanones formed primarily through furan chemistry. This mechanism is applied to a Lagrangian box model used previously to model a real biomass burning plume. The customized mechanism reproduces the decay of furans and oxygenated aromatics and the formation of secondary NMOGs, such as maleic anhydride. Based on model simulations conducted with and without furans, it is estimated that furans contributed up to 10 % of ozone and over 90 % of maleic anhydride formed within the first 4 h of oxidation. It is shown that maleic anhydride is present in a biomass burning plume transported over several days, which demonstrates the utility of anhydrides as markers for aged biomass burning plumes. 
    more » « less
  3. Wildfire smoke contains numerous different reactive organic gases, many of which have only recently been identified and quantified. Consequently, their relative importance as an oxidant sink is poorly constrained, resulting in incomplete representation in both global chemical transport models (CTMs) and explicit chemical mechanisms. Leveraging 160 gas-phase measurements made during the Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE-CAN) aircraft campaign, we calculate OH reactivities (OHRs) for western U.S. wildfire emissions, smoke aged >3 days, smoke-impacted and low/no smoke-impacted urban atmospheres, and the clean free troposphere. VOCs were found to account for ∼80% of the total calculated OHR in wildfire emissions, with at least half of the field VOC OHR not currently implemented for biomass burning (BB) emissions in the commonly used GEOS-Chem CTM. To improve the representation of OHR, we recommend CTMs implement furan-containing species, butadienes, and monoterpenes for BB. The Master Chemical Mechanism (MCM) was found to account for 88% of VOC OHR in wildfire emissions and captures its observed decay in the first few hours of aging, indicating that most known VOC OH sinks are included in the explicit mechanisms. We find BB smoke enhanced the average total OHR by 53% relative to the low/no smoke urban background, mainly due to the increase in VOCs and CO thus promoting urban ozone production. This work highlights the most important VOC species for daytime BB plume oxidation and provides a roadmap for which species should be prioritized in next-generation CTMs to better predict the downwind air quality and health impacts of BB smoke. 
    more » « less
  4. Abstract. As wildfires intensify and fire seasons lengthen across the western US, the development of models that can predict smoke plume concentrations and track wildfire-induced air pollution exposures has become critical. Wildfire smoke plume height is a key indicator of the vertical placement of plume mass emitted from wildfire-related aerosol sources in climate and air quality models. With advancements in Earth observation (EO) satellites, spaceborne products for aerosol layer height or plume injection height have recently emerged with increased global-scale spatiotemporal resolution. However, to evaluate column radiative effects and refine satellite algorithms, vertical profiles of regionally representative aerosol properties from wildfires need to be measured directly. In this study, we conducted the first comprehensive evaluation of four passive satellite remote-sensing techniques specifically designed for retrieving plume height. We compared these satellite products with the airborne Wyoming Cloud Lidar (WCL) measurements during the 2018 Biomass Burning Flux Measurements of Trace Gases and Aerosols (BB-FLUX) field campaign in the western US. Two definitions, namely, “plume top” and “extinction-weighted mean plume height”, were used to derive the representative heights of wildfire smoke plumes, based on the WCL-derived vertical aerosol extinction coefficient profiles. Using these two definitions, we performed a comparative analysis of multisource satellite-derived plume height products for wildfire smoke. We provide a discussion related to which satellite product is most appropriate for determining plume height characteristics near a fire event or estimating downwind plume rise equivalent height, under multiple aerosol loadings. Our findings highlight the importance of understanding the sensitivity of different passive remote-sensing techniques on space-based wildfire smoke plume height observations, in order to resolve ambiguity surrounding the concept of “effective smoke plume height”. As additional aerosol-observing satellites are planned in the coming years, our results will inform future remote-sensing missions and EO satellite algorithm development. This bridges the gap between satellite observations and plume rise modeling to further investigate the vertical distribution of wildfire smoke aerosols. 
    more » « less
  5. The evolution of organic aerosol (OA) and brown carbon (BrC) in wildfire plumes, including the relative contributions of primary versus secondary sources, has been uncertain in part because of limited knowledge of the precursor emissions and the chemical environment of smoke plumes. We made airborne measurements of a suite of reactive trace gases, particle composition, and optical properties in fresh western US wildfire smoke in July through August 2018. We use these observations to quantify primary versus secondary sources of biomass-burning OA (BBPOA versus BBSOA) and BrC in wildfire plumes. When a daytime wildfire plume dilutes by a factor of 5 to 10, we estimate that up to one-third of the primary OA has evaporated and subsequently reacted to form BBSOA with near unit yield. The reactions of measured BBSOA precursors contribute only 13 ± 3% of the total BBSOA source, with evaporated BBPOA comprising the rest. We find that oxidation of phenolic compounds contributes the majority of BBSOA from emitted vapors. The corresponding particulate nitrophenolic compounds are estimated to explain 29 ± 15% of average BrC light absorption at 405 nm (BrC Abs405) measured in the first few hours of plume evolution, despite accounting for just 4 ± 2% of average OA mass. These measurements provide quantitative constraints on the role of dilution-driven evaporation of OA and subsequent radical-driven oxidation on the fate of biomass-burning OA and BrC in daytime wildfire plumes and point to the need to understand how processing of nighttime emissions differs. 
    more » « less