skip to main content


Title: A Multi-Robotic System for Environmental Dirt Cleaning
An industrial environment usually has a lot of waste that could cause harmful effects to both the products and the workers resulting in product defects, itchy eyes or chronic obstructive pulmonary disease, etc. While automatic cleaning robots could be used, the environment is often too large for one robot to clean alone in addition to the fact that it does not have adequate stored dirt capacity. We present a multi-robotic dirt cleaning algorithm for coordinating multiple iRobot-Creates as a team to efficiently clean an environment. Often, since some spaces in the environment are clean while others are dirty, our multi-robotic system possesses a path planning algorithm to allow the robot team to clean efficiently by increasing vacuum motor power on the area with higher dirt level. Overall, our multi-robotic system outperforms the single robot system in time efficiency while having almost the same total battery usage and cleaning efficiency result. The project source codes is available on our ARA lab's github: https://github.com/aralab-unr/multi-robot-cleaning.  more » « less
Award ID(s):
1757929
NSF-PAR ID:
10211200
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Symposium on System Integration (SII)
Page Range / eLocation ID:
1294 to 1299
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a closed-loop multi-arm motion planner that is scalable and flexible with team size. Traditional multi-arm robotic systems have relied on centralized motion planners, whose run times often scale exponentially with team size, and thus, fail to handle dynamic environments with open-loop control. In this paper, we tackle this problem with multi-agent reinforcement learning, where a shared policy network is trained to control each individual robot arm to reach its target end-effector pose given observations of its workspace state and target end-effector pose. The policy is trained using Soft Actor-Critic with expert demonstrations from a sampling-based motion planning algorithm (i.e., BiRRT). By leveraging classical planning algorithms, we can improve the learning efficiency of the reinforcement learning algorithm while retaining the fast inference time of neural networks. The resulting policy scales sub-linearly and can be deployed on multi-arm systems with variable team sizes. Thanks to the closed-loop and decentralized formulation, our approach generalizes to 5-10 multiarm systems and dynamic moving targets (>90% success rate for a 10-arm system), despite being trained on only 1-4 arm planning tasks with static targets. 
    more » « less
  2. Faust, Aleksandra ; Hsu, David ; Neumann, Gerhard (Ed.)
    Enabling human operators to interact with robotic agents using natural language would allow non-experts to intuitively instruct these agents. Towards this goal, we propose a novel Transformer-based model which enables a user to guide a robot arm through a 3D multi-step manipulation task with natural language commands. Our system maps images and commands to masks over grasp or place locations, grounding the language directly in perceptual space. In a suite of block rearrangement tasks, we show that these masks can be combined with an existing manipulation framework without re-training, greatly improving learning efficiency. Our masking model is several orders of magnitude more sample efficient than typical Transformer models, operating with hundreds, not millions, of examples. Our modular design allows us to leverage supervised and reinforcement learning, providing an easy interface for experimentation with different architectures. Our model completes block manipulation tasks with synthetic commands more often than a UNet-based baseline, and learns to localize actions correctly while creating a mapping of symbols to perceptual input that supports compositional reasoning. We provide a valuable resource for 3D manipulation instruction following research by porting an existing 3D block dataset with crowdsourced language to a simulated environment. Our method’s absolute improvement in identifying the correct block on the ported dataset demonstrates its ability to handle syntactic and lexical variation. 
    more » « less
  3. Abstract Background

    A robotic rehabilitation gym can be defined as multiple patients training with multiple robots or passive sensorized devices in a group setting. Recent work with such gyms has shown positive rehabilitation outcomes; furthermore, such gyms allow a single therapist to supervise more than one patient, increasing cost-effectiveness. To allow more effective multipatient supervision in future robotic rehabilitation gyms, we propose an automated system that could dynamically assign patients to different robots within a session in order to optimize rehabilitation outcome.

    Methods

    As a first step toward implementing a practical patient-robot assignment system, we present a simplified mathematical model of a robotic rehabilitation gym. Mixed-integer nonlinear programming algorithms are used to find effective assignment and training solutions for multiple evaluation scenarios involving different numbers of patients and robots (5 patients and 5 robots, 6 patients and 5 robots, 5 patients and 7 robots), different training durations (7 or 12 time steps) and different complexity levels (whether different patients have different skill acquisition curves, whether robots have exit times associated with them). In all cases, the goal is to maximize total skill gain across all patients and skills within a session.

    Results

    Analyses of variance across different scenarios show that disjunctive and time-indexed optimization models significantly outperform two baseline schedules: staying on one robot throughout a session and switching robots halfway through a session. The disjunctive model results in higher skill gain than the time-indexed model in the given scenarios, and the optimization duration increases as the number of patients, robots and time steps increases. Additionally, we discuss how different model simplifications (e.g., perfectly known and predictable patient skill level) could be addressed in the future and how such software may eventually be used in practice.

    Conclusions

    Though it involves unrealistically simple scenarios, our study shows that intelligently moving patients between different rehabilitation robots can improve overall skill acquisition in a multi-patient multi-robot environment. While robotic rehabilitation gyms are not yet commonplace in clinical practice, prototypes of them already exist, and our study presents a way to use intelligent decision support to potentially enable more efficient delivery of technologically aided rehabilitation.

     
    more » « less
  4. Efficient path planning and communication of multi-robot systems in the case of a search and rescue operation is a critical issue facing robotics disaster relief efforts. Ensuring all the nodes of a specialized robotic search team are within range, while also covering as much area as possible to guarantee efficient response time, is the goal of this paper. We propose a specialized search-and-rescue model based on a mesh network topology of aerial and ground robots. The proposed model is based on several methods. First, each robot determines its position relative to other robots within the system, using RSSI. Packets are then communicated to other robots in the system detailing important information regarding robot system status, status of the mission, and identification number. The results demonstrate the ability to determine multi-robot navigation with RSSI, allowing low computation costs and increased search-and-rescue time efficiency. 
    more » « less
  5. The objective of this research is to evaluate vision-based pose estimation methods for on-site construction robots. The prospect of human-robot collaborative work on construction sites introduces new workplace hazards that must be mitigated to ensure safety. Human workers working on tasks alongside construction robots must perceive the interaction to be safe to ensure team identification and trust. Detecting the robot pose in real-time is thus a key requirement in order to inform the workers and to enable autonomous operation. Vision-based (marker-less, marker-based) and sensor-based (IMU, UWB) are two of the main methods for estimating robot pose. The marker-based and sensor-based methods require some additional preinstalled sensors or markers, whereas the marker-less method only requires an on-site camera system, which is common on modern construction sites. In this research, we develop a marker-less pose estimation system, which is based on a convolutional neural network (CNN) human pose estimation algorithm: stacked hourglass networks. The system is trained with image data collected from a factory setup environment and labels of excavator pose. We use a KUKA robot arm with a bucket mounted on the end-effector to represent a robotic excavator in our experiment. We evaluate the marker-less method and compare the result with the robot’s ground truth pose. The preliminary results show that the marker-less method is capable of estimating the pose of the excavator based on a state-of-the-art human pose estimation algorithm. 
    more » « less