skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimizing the LO Distribution Architecture of mm-Wave Massive MIMO Receivers
Wireless networks at millimeter wavelengths have significant implementation difficulties. The path loss at these frequencies naturally leads us to consider antenna arrays with many elements. In these arrays, local oscillator (LO) generation is particularly challenging since the LO specifications affect the system architecture, signal processing design, and circuit implementation. We thoroughly analyze the effect of LO ar- chitecture design choices on the performance of a mm-wave massive MIMO uplink. This investigation focuses on the tradeoffs involved in centralized and distributed LO generation, correlated and uncorrelated phase noise sources, and the bandwidths of PLLs and carrier recovery loops. We show that, from both a performance and implementation complexity standpoint, the op- timal LO architecture uses several distributed subarrays locked to a single intermediate-frequency reference in the low GHz range. Additionally, we show that the choice of PLL and carrier recovery loop bandwidths strongly affects the performance; for typical system parameters, loop bandwidths on the order of tens of MHz achieve SINRs suitable for high-order constellations. Finally, we present system simulations incorporating a complete model of the LO generation system and consider the case of a 128-element array with 16x-spatial multiplexing and a 2 GHz channel bandwidth at 75 GHz carrier. Using our optimization procedure we show that the system can support 16-way spatial multiplexing with 64-QAM modulation.  more » « less
Award ID(s):
1642920
PAR ID:
10211206
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ArXivorg
Volume:
https://arxiv.org/abs/1911.01339v1
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a novel system architecture to suppress in-band artifacts (IBAs) generated from out-of-band (OOB) interferers, including reciprocal mixing by the local oscillator's (LO) spurs and phase noise (PN), third-order intermodulation (IM3) artifacts, and harmonic down-conversion (HDC) artifacts. Theory and design procedure are explained, and measurement results from a prototype taped out in 45nm RF SOI process are presented. The receiver was designed for the frequency range of 1.2-2.4GHz and achieved a noise figure (NF) of 3.1-6.2dB, blocker -1dB compression point (B1dB) of -10.3Bm, and OOB third-order input-referred intercept point (IIP3) of 9.3dBm on average, before artifact suppression. Measurements were performed on 16-quadrature amplitude modulated (16QAM) signals with modulated and unmodulated OOB interferers to show artifact suppression for various kinds of IBA. For each IBA, artifact suppression performance was assessed across frequency and interferer power. Interference tolerance improvement of up to 38dB was achieved. Additionally, reconstruction of the artifacts for the cases of spur and HDC was demonstrated, showing simultaneous recovery of two signals, providing a form of carrier aggregation. 
    more » « less
  2. Description / Abstract: In order to effectively provide INaaS (Inference-as-a-Service) for AI applications in resource-limited cloud environments, two major challenges must be overcome: achieving low latency and providing multi-tenancy. This paper presents EIF (Efficient INaaS Framework), which uses a heterogeneous CPU-FPGA architecture to provide three methods to address these challenges (1) spatial multiplexing via software-hardware co-design virtualization techniques, (2) temporal multiplexing that exploits the sparsity of neural-net models, and (3) streaming-mode inference which overlaps data transfer and computation. The prototype EIF is implemented on an Intel PAC (shared-memory CPU-FPGA) platform. For evaluation, 12 types of DNN models were used as benchmarks, with different size and sparsity. Based on these experiments, we show that in EIF, the temporal multiplexing technique can improve the user density of an AI Accelerator Unit from 2$$\times$$ to 6$$\times$$, with marginal performance degradation. In the prototype system, the spatial multiplexing technique supports eight AI Accelerators Unit on one FPGA. By using a streaming mode based on a Mediated Pass-Through architecture, EIF can overcome the FPGA on-chip memory limitation to improve multi-tenancy and optimize the latency of INaaS. To further enhance INaaS, EIF utilizes the MapReduce function to provide a more flexible QoS. Together with the temporal/spatial multiplexing techniques, EIF can support 48 users simultaneously on a single FPGA board in our prototype system. In all tested benchmarks, cold-start latency accounts for only approximately 5\% of the total response time. 
    more » « less
  3. Abstract—Sixth generation (6G) cellular systems are expected to extend the operational range to sub-Terahertz (THz) frequencies between 100 and 300 GHz due to the broad unexploited spectrum therein. A proper channel model is needed to accurately describe spatial and temporal channel characteristics and faithfully create channel impulse responses at sub-THz frequencies. This paper studies the channel spatial statistics such as the number of spatial clusters and cluster power distribution based on recent radio propagation measurements conducted at 142 GHz in an urban microcell (UMi) scenario. For the 28 measured locations, we observe one to four spatial clusters at most locations. A detailed spatial statistical multiple input multiple output (MIMO) channel generation procedure is introduced based on the derived empirical channel statistics. We find that beamforming provides better spectral efficiency than spatial multiplexing in the LOS scenario due to the boresight path, and two spatial streams usually offer the highest spectral efficiency at most NLOS locations due to the limited number of spatial clusters. Index Terms—Channel Measurement; Channel Modeling; Spatial Statistics; Beamforming; Spatial Multiplexing; MIMO; Sub- Terahertz; 140 GHz; 5G; 6G 
    more » « less
  4. null (Ed.)
    This paper presents a two-layer RF/analog weighting MIMO transceiver that comprises fully-connected (FC) multi-stream beamforming tiles in the RF-domain first layer, followed by a fully connected analog- or digital-domain baseband layer. The architecture mitigates the complexity versus spectral-efficiency tradeoffs of existing hybrid MIMO architectures and enables MIMO stream/user scalability, superior energy-efficiency, and spatial-processing flexibility. Moreover, multi-layer architectures with FC tiles inherently enable the co-existence of MIMO with carrier-aggregation and full-duplex beamforming. A compact, reconfigurable bidirectional circuit architecture is introduced, including a new Cartesian-combining/splitting beamforming receiver/transmitter, dual-band bidirectional beamforming network, dual-band frequency translation chains, and baseband Cartesian beamforming with an improved programmable gain amplifier design. A 28/37 GHz band, two-layer, eight-element, four-stream (with two FC-tiles) hybrid MIMO transceiver prototype is designed in 65-nm CMOS to demonstrate the above features. The prototype achieves accurate beam/null-steering capability, excellent area/power efficiency, and state-of-the-art TX/RX mode performance in two simultaneous bands while demonstrating multi-antenna (up to eight) multi-stream (up to four) over-the-air spatial multiplexing operation using proposed energy-efficient two-layer hybrid beamforming scheme. 
    more » « less
  5. null (Ed.)
    Abstract: Communication systems of the future will require hundreds of independent spatial channels achieved through dense antenna arrays connected to digital signal processing software defined radios. The cost and complexity of data converters are a significant concern with systems having hundreds of antennas. This paper explores frequency division multiplexing as an approach for augmenting the baseband signals of multiple antenna channels such that a single ADC can sample a multitude of antennas in an array. The approach is equally applicable to both massive MIMO and mm-wave digital wireless arrays. An example design based on Xilinx RF SoC for combining 4 antenna channels at 28 GHz into a single ADC is provided. 
    more » « less