skip to main content

Title: 3-D swimming microdrone powered by acoustic bubbles
Mobile microrobots that maneuver in liquid environments and navigate inside the human body have drawn a great interest due to their possibility for medical uses serving as an in vivo cargo. For this system, the effective self-propelling method, which should be powered wirelessly and controllable in 3-D space, is of paramount importance. This article describes a bubble-powered swimming microdrone that can navigate in 3-D space in a controlled manner. To enable 3-D propulsion with steering capability, air bubbles of three lengths are trapped in microtubes that are embedded and three-dimensionally aligned inside the drone body using two-photon polymerization. These bubbles can generate on-demand 3-D propulsion through microstreaming when they are selectively excited at their individual resonance frequencies that depend on the bubble sizes. In order to equip the drone with highly stable maneuverability, a non-uniform mass distribution of the drone body is carefully designed to spontaneously restore the drone to the upright position from disturbances. A mathematical model of the restoration mechanism is developed to predict the restoration behavior showing a good agreement with the experimental data. The present swimming microdrone potentially lends itself to a robust 3-D maneuverable microscale mobile cargo navigating in vitro and in vivo for biomedical more » applications. « less
Authors:
;
Award ID(s):
1637815
Publication Date:
NSF-PAR ID:
10211266
Journal Name:
Lab on a Chip
ISSN:
1473-0197
Sponsoring Org:
National Science Foundation
More Like this
  1. Wirelessly powered and controllable microscale propulsion in 3-D space is of critical importance to micro swimming drones serving as an active and maneuverable in vivo cargo for medical uses. This aritcle describes a 3-D micro swimming drone navigating in 3-D space, propelled by unidirectional microstreaming flow from acoutsically oscillating bubbles. 3-D propulsion is enabled by multiple bubbles with different lengths embedded in different orientations inside the drone body. Each bubble generats propulsion by applying acoustic field at its resonance frequency. Therefore, 3-D propulsion in any direction is achievable by resonating bubbles individually or jointly. The drone with such a complexmore »design was fabricated by a two-photon polymerization 3-D printer. For stable maneuverability, a non-uniform mass distribution of the drone is designed to restore the drone to the designated posture under any disturbances. The restoration mechanism is formulated by a mathematical model, predicting the restoring time and shows an excellent agreemnt with the experimental results. This 3-D micro swimning drone proves its robustness as a manueverable microrobot navigating along programmble path in a 3-D space through selective and joint actuation of microbubbles.« less
  2. The colonial cnidarian, Nanomia bijuga, is highly proficient at moving in three-dimensional space through forward swimming, reverse swimming and turning. We used high speed videography, particle tracking, and particle image velocimetry (PIV) with frame rates up to 6400 s−1 to study the kinematics and fluid mechanics of N. bijuga during turning and reversing. N. bijuga achieved turns with high maneuverability (mean length–specific turning radius, R/L = 0.15 ± 0.10) and agility (mean angular velocity, ω = 104 ± 41 deg. s−1). The maximum angular velocity of N. bijuga, 215 deg. s−1, exceeded that of many vertebrates with more complex bodymore »forms and neurocircuitry. Through the combination of rapid nectophore contraction and velum modulation, N. bijuga generated high speed, narrow jets (maximum = 1063 ± 176 mm s−1; 295 nectophore lengths s−1) and thrust vectoring, which enabled high speed reverse swimming (maximum = 134 ± 28 mm s−1; 37 nectophore lengths s−1) that matched previously reported forward swimming speeds. A 1:1 ratio of forward to reverse swimming speed has not been recorded in other swimming organisms. Taken together, the colonial architecture, simple neurocircuitry, and tightly controlled pulsed jets by N. bijuga allow for a diverse repertoire of movements. Considering the further advantages of scalability and redundancy in colonies, N. bijuga is a model system for informing underwater propulsion and navigation of complex environments.« less
  3. ABSTRACT Citizen science has helped astronomers comb through large data sets to identify patterns and objects that are not easily found through automated processes. The Milky Way Project (MWP), a citizen science initiative on the Zooniverse platform, presents internet users with infrared (IR) images from Spitzer Space Telescope Galactic plane surveys. MWP volunteers make classification drawings on the images to identify targeted classes of astronomical objects. We present the MWP second data release (DR2) and an updated data reduction pipeline written in python. We aggregate ∼3 million classifications made by MWP volunteers during the years 2012–2017 to produce the DR2more »catalogue, which contains 2600 IR bubbles and 599 candidate bow shock driving stars. The reliability of bubble identifications, as assessed by comparison to visual identifications by trained experts and scoring by a machine-learning algorithm, is found to be a significant improvement over DR1. We assess the reliability of IR bow shocks via comparison to expert identifications and the colours of candidate bow shock driving stars in the 2MASS point-source catalogue. We hence identify highly reliable subsets of 1394 DR2 bubbles and 453 bow shock driving stars. Uncertainties on object coordinates and bubble size/shape parameters are included in the DR2 catalogue. Compared with DR1, the DR2 bubbles catalogue provides more accurate shapes and sizes. The DR2 catalogue identifies 311 new bow shock driving star candidates, including three associated with the giant H ii regions NGC 3603 and RCW 49.« less
  4. To overcome the reversible nature of low-Reynolds-number flow, a variety of biomimetic microrobotic propulsion schemes and devices capable of rapid transport have been developed. However, these approaches have been typically optimized for a specific function or environment and do not have the flexibility that many real organisms exhibit to thrive in complex microenvironments. Here, inspired by adaptable microbes and using a combination of experiment and simulation, we demonstrate that one-dimensional colloidal chains can fold into geometrically complex morphologies, including helices, plectonemes, lassos, and coils, and translate via multiple mechanisms that can be varied with applied magnetic field. With chains ofmore »multiblock asymmetry, the propulsion mode can be switched from bulk to surface-enabled, mimicking the swimming of microorganisms such as flagella-rotating bacteria and tail-whipping sperm and the surface-enabled motion of arching and stretching inchworms and sidewinding snakes. We also demonstrate that reconfigurability enables navigation through three-dimensional and narrow channels simulating capillary blood vessels. Our results show that flexible microdevices based on simple chains can transform both shape and motility under varying magnetic fields, a capability we expect will be particularly beneficial in complex in vivo microenvironments.

    « less
  5. We investigate the dynamics of Lumbriculus variegatus in water-saturated sediment beds to understand limbless locomotion in the benthic zone found at the bottom of lakes and oceans. These slender aquatic worms are observed to perform elongation–contraction and transverse undulatory strokes in both water-saturated sediments and water. Greater drag anisotropy in the sediment medium is observed to boost the burrowing speed of the worm compared to swimming in water with the same stroke using drag-assisted propulsion. We capture the observed speeds by combining the calculated forms based on resistive-force theory of undulatory motion in viscous fluids and a dynamic anchor modelmore »of peristaltic motion in the sediments. Peristalsis is found to be effective for burrowing in noncohesive sediments which fill in rapidly behind the moving body inside the sediment bed. Whereas the undulatory stroke is found to be effective in water and in shallow sediment layers where anchoring is not possible to achieve peristaltic motion. We show that such dual strokes occur as well in the earthworm Eisenia fetida which inhabits moist sediments that are prone to flooding. Our analysis in terms of the rheology of the medium shows that the dual strokes are exploited by organisms to negotiate sediment beds that may be packed heterogeneously and can be used by active intruders to move effectively from a fluid through the loose bed surface layer which fluidizes easily to the well-consolidated bed below.« less