skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Future Application of Organ-on-a-Chip Technologies as Proving Grounds for MicroBioRobots
An evolving understanding of disease pathogenesis has compelled the development of new drug delivery approaches. Recently, bioinspired microrobots have gained traction as drug delivery systems. By leveraging the microscale phenomena found in physiological systems, these microrobots can be designed with greater maneuverability, which enables more precise, controlled drug release. Their function could be further improved by testing their efficacy in physiologically relevant model systems as part of their development. In parallel with the emergence of microscale robots, organ-on-a-chip technologies have become important in drug discovery and physiological modeling. These systems reproduce organ-level functions in microfluidic devices, and can also incorporate specific biological, chemical, and physical aspects of a disease. This review highlights recent developments in both microrobotics and organ-on-a-chip technologies and envisions their combined use for developing future drug delivery systems.  more » « less
Award ID(s):
1709238
PAR ID:
10211379
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Micromachines
Volume:
11
Issue:
10
ISSN:
2072-666X
Page Range / eLocation ID:
947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To mimic physiological microenvironments in organ-on-a-chip systems, physiologically relevant parameters are required to precisely access drug metabolism. Oxygen level is a critical microenvironmental parameter to maintain cellular or tissue functions and modulate their behaviors. Current organ-on-a-chip setups are oftentimes subjected to the ambient incubator oxygen level at 21%, which is higher than most if not all physiological oxygen concentrations. Additionally, the physiological oxygen level in each tissue is different ranging from 0.5 to 13%. Here, a closed-loop modular multiorgan-on-chips platform is developed to enable not only real-time monitoring of the oxygen levels but, more importantly, tight control of them in the range of 4 to 20% across each connected microtissue-on-a-chip in the circulatory culture medium. This platform, which consists of microfluidic oxygen scavenger(s), an oxygen generator, a monitoring/controller system, and bioreactor(s), allows for independent, precise upregulation and downregulation of dissolved oxygen in the perfused culture medium to meet the physiological oxygen level in each modular microtissue compartment, as needed. Furthermore, drug studies using the platform demonstrate that the oxygen level affects drug metabolism in the parallelly connected liver, kidney, and arterial vessel microtissues without organ–organ interactions factored in. Overall, this platform can promote the performances of organ-on-a-chip devices in drug screening by providing more physiologically relevant and independently adjustable oxygen microenvironments for desired organ types on a single- or a multiorgan-on-chip(s) configuration. 
    more » « less
  2. Tissue chip technology has revolutionized biomedical applications and the medical science field for the past few decades. Currently, tissue chips are one of the most powerful research tools aiding in in vitro work to accurately predict the outcome of studies when compared to monolayer two-dimensional (2D) cell cultures. While 2D cell cultures held prominence for a long time, their lack of biomimicry has resulted in a transition to 3D cell cultures, including tissue chips technology, to overcome the discrepancies often seen in in vitro studies. Due to their wide range of applications, different organ systems have been studied over the years, one of which is the blood brain barrier (BBB) which is discussed in this review. The BBB is an incredible protective unit of the body, keeping out pathogens from entering the brain through vasculature. However, there are some microbes and certain diseases that disrupt the function of this barrier which can lead to detrimental outcomes. Over the past few years, various designs of the BBB have been proposed and modeled to study drug delivery and disease modeling on Earth. More recently, researchers have started to utilize tissue chips in space to study the effects of microgravity on human health. BBB tissue chips in space can be a tool to understand function mechanisms and therapeutics. This review addresses the limitations of monolayer cell culture which could be overcome with utilizing tissue chips technology. Current BBB models on Earth and how they are fabricated as well as what influences the BBB cell culture in tissue chips are discussed. Then, this article reviews how application of these technologies together with incorporating biosensors in space would be beneficial to help in predicting a more accurate physiological response in specific tissue or organ chips. Finally, the current platforms used in space and some solutions to overcome some shortcomings for future BBB tissue chip research are also discussed. 
    more » « less
  3. null (Ed.)
    Drug delivery through the skin offers many advantages such as avoidance of hepatic first-pass metabolism, maintenance of steady plasma concentration, safety, and compliance over oral or parenteral pathways. However, the biggest challenge for transdermal delivery is that only a limited number of potent drugs with ideal physicochemical properties can passively diffuse and intercellularly permeate through skin barriers and achieve therapeutic concentration by this route. Significant efforts have been made toward the development of approaches to enhance transdermal permeation of the drugs. Among them, microneedles represent one of the microscale physical enhancement methods that greatly expand the spectrum of drugs for transdermal and intradermal delivery. Microneedles typically measure 0.1–1 mm in length. In this review, microneedle materials, fabrication routes, characterization techniques, and applications for transdermal delivery are discussed. A variety of materials such as silicon, stainless steel, and polymers have been used to fabricate solid, coated, hollow, or dissolvable microneedles. Their implications for transdermal drug delivery have been discussed extensively. However, there remain challenges with sustained delivery, efficacy, cost-effective fabrication, and large-scale manufacturing. This review discusses different modes of characterization and the gaps in manufacturing technologies associated with microneedles. This review also discusses their potential impact on drug delivery, vaccine delivery, disease diagnostic, and cosmetics applications. 
    more » « less
  4. null (Ed.)
    Small soft robotic systems are being explored for myriad applications in medicine. Specifically, magnetically actuated microrobots capable of remote manipulation hold significant potential for the targeted delivery of therapeutics and biologicals. Much of previous efforts on microrobotics have been dedicated to locomotion in aqueous environments and hard surfaces. However, our human bodies are made of dense biological tissues, requiring researchers to develop new microrobotics that can locomote atop tissue surfaces. Tumbling microrobots are a sub-category of these devices capable of walking on surfaces guided by rotating magnetic fields. Using microrobots to deliver payloads to specific regions of sensitive tissues is a primary goal of medical microrobots. Central nervous system (CNS) tissues are a prime candidate given their delicate structure and highly region-specific function. Here we demonstrate surface walking of soft alginate capsules capable of moving on top of a rat cortex and mouse spinal cord ex vivo , demonstrating multi-location small molecule delivery to up to six different locations on each type of tissue with high spatial specificity. The softness of alginate gel prevents injuries that may arise from friction with CNS tissues during millirobot locomotion. Development of this technology may be useful in clinical and preclinical applications such as drug delivery, neural stimulation, and diagnostic imaging. 
    more » « less
  5. Microrobots are being explored for biomedical applications, such as drug delivery, biological cargo transport, and minimally invasive surgery. However, current efforts largely focus on proof-of-concept studies with nontranslatable materials through a "design-and-apply" approach, limiting the potential for clinical adaptation. While these proof-of-concept studies have been key to advancing microrobot technologies, we believe that the distinguishing capabilities of microrobots will be most readily brought to patient bedsides through a "design-by-problem" approach, which involves focusing on unsolved problems to inform the design of microrobots with practical capabilities. As outlined below, we propose that the clinical translation of microrobots will be accelerated by a judicious choice of target applications, improved delivery considerations, and the rational selection of translation-ready biomaterials, ultimately reducing patient burden and enhancing the efficacy of therapeutic drugs for difficult-to-treat diseases. 
    more » « less