skip to main content

Title: Limitation by a shared mutualist promotes coexistence of multiple competing partners

Although mutualisms are often studied as simple pairwise interactions, they typically involve complex networks of interacting species. How multiple mutualistic partners that provide the same service and compete for resources are maintained in mutualistic networks is an open question. We use a model bacterial community in which multiple ‘partner strains’ ofEscherichia colicompete for a carbon source and exchange resources with a ‘shared mutualist’ strain ofSalmonella enterica. In laboratory experiments, competingE. colistrains readily coexist in the presence ofS. enterica, despite differences in their competitive abilities. We use ecological modeling to demonstrate that a shared mutualist can create temporary resource niche partitioning by limiting growth rates, even if yield is set by a resource external to a mutualism. This mechanism can extend to maintain multiple competing partner species. Our results improve our understanding of complex mutualistic communities and aid efforts to design stable microbial communities.

; ; ;
Publication Date:
Journal Name:
Nature Communications
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Many biological functions are leaky, and organisms that perform them contribute some of their products to a community “marketplace” in which nonperforming individuals may compete for them. Leaky functions are partitioned unequally in microbial communities, and the evolutionary forces determining which species perform them and which become beneficiaries are poorly understood. Here, we demonstrate that the market principle of comparative advantage determines the distribution of a leaky antibiotic resistance gene in an environment occupied by two “species”—strains ofEscherichia coligrowing on mutually exclusive resources and thus occupying separate niches. Communities comprised of antibiotic-resistant cells were rapidly invaded by sensitive cells of both types. While the two phenotypes coexisted stably for 500 generations, in 15/18 replicates, antibiotic sensitivity became fixed in one species. Fixation always occurred in the same species despite both species being genetically identical except for their niche-defining mutation. In the absence of antibiotic, the fitness cost of resistance was identical in both species. However, the intrinsic resistance of the species that ultimately became the sole helper was significantly lower, and thus its reward for expressing the resistance gene was higher. Opportunity cost of resistance, not absolute cost or efficiency of antibiotic removal, determined which species became the helper, consistentmore »with the economic theory of comparative advantage. We present a model that suggests that this market-like dynamic is a general property of Black Queen systems and, in communities dependent on multiple leaky functions, could lead to the spontaneous development of an equitable and efficient division of labor.

    « less
  2. Beaulieu, Jeremy (Ed.)
    Abstract Due to their non-motile nature, plants rely heavily on mutualistic interactions to obtain resources and carry out services. One key mutualism is the plant–microbial mutualism in which a plant trades away carbon to a microbial partner for nutrients like nitrogen and phosphorous. Plants show much variation in the use of this partnership from the individual level to entire lineages depending upon ecological, evolutionary and environmental context. We sought to determine how this context dependency could result in the promotion, exclusion or coexistence of the microbial mutualism by asking if and when the partnership provided a competitive advantage to the plant. To that end, we created a 2 × 2 evolutionary game in which plants could either be a mutualist and pair with a microbe or be a non-mutualist and forgo the partnership. Our model includes both frequency dependence and density dependence, which gives us the eco-evolutionary dynamics of mutualism evolution. As in all models, mutualism only evolved if it could offer a competitive advantage and its net benefit was positive. However, surprisingly the model reveals the possibility of coexistence between mutualist and non-mutualist genotypes due to competition between mutualists over the microbially obtained nutrient. Specifically, frequency dependence of hostmore »strategies can make the microbial symbiont less beneficial if the microbially derived resources are shared, a phenomenon that increasingly reduces the frequency of mutualism as the density of competitors increases. In essence, ecological competition can act as a hindrance to mutualism evolution. We go on to discuss basic experiments that can be done to test and falsify our hypotheses.« less
  3. Mutualisms, or reciprocally beneficial interspecific interactions, constitute the foundation of many ecological communities and agricultural systems. Mutualisms come in different forms, from pairwise interactions to extremely diverse communities, and they are continually challenged with exploitation by nonmutualistic community members (exploiters). Thus, understanding how mutualisms persist remains an essential question in ecology. Theory suggests that high species richness and functional redundancy could promote mutualism persistence in complex mutualistic communities. Using a yeast system (Saccharomyces cerevisiae), we experimentally show that communities with the greatest mutualist richness and functional redundancy are nearly two times more likely to survive exploitation than are simple communities. Persistence increased because diverse communities were better able to mitigate the negative effects of competition with exploiters. Thus, large mutualistic networks may be inherently buffered from exploitation.

  4. In most environments, organisms compete for limited resources. The number and relative abundance of species that an ecosystem can host is referred to as ‘species diversity’. The competitive-exclusion principle is a hypothesis which proposes that, in an ecosystem, competition for resources results in decreased diversity: only species best equipped to consume the available resources thrive, while their less successful competitors die off. However, many natural ecosystems foster a wide array of species despite offering relatively few resources. Researchers have proposed many competing theories to explain how this paradox can emerge, but they have mainly focused on ecosystems where nutrients are steadily supplied. By contrast, less is known about the way species diversity is maintained when nutrients are only intermittently available, for example in ecosystems that have seasons. To address this question, Erez, Lopez et al. modeled communities of bacteria in which nutrients were repeatedly added and then used up. Depending on conditions, a variety of relationships between the amount of nutrient supplied and community diversity could emerge, suggesting that ecosystems do not follow a simple, universal rule that dictates species diversity. In particular, the resulting communities displayed a higher diversity of microbes than the limit imposed by the competitive-exclusion principle.more »Further observations allowed Erez, Lopez et al. to suggest guiding principles for when diversity in ecosystems will be maintained or lost. In this framework, ‘early-bird’ species, which rapidly use a subset of the available nutrients, grow to dominate the ecosystem. Even though ‘late-bird’ species are more effective at consuming the remaining resources, they cannot compete with the increased sheer numbers of the ‘early-birds’, leading to a ‘rich-get-richer’ phenomenon. Oceanic plankton, arctic permafrost and many other threatened, resource-poor ecosystems across the world can dramatically influence our daily lives. Closer to home, shifts in the microbe communities that live on the surface of the human body and in the digestive system are linked to poor health. Understanding how species diversity emerges and changes will help to protect our external and internal environments.« less
  5. Abstract

    Southern Ocean (SO) diatoms play an important role in global carbon flux, and their influence on carbon export is directly linked to interactions with epiphytic bacteria. Bacterial symbionts that increase diatom growth promote atmospheric carbon uptake, while bacterial degraders divert diatom biomass into the microbial loop where it can then be released as carbon dioxide through respiration. To further explore SO diatom-bacterial associations, a natural model system is needed that is representative of these diverse and important interactions. Here, we use concurrent cultivation to isolate a species of the ecologically-important SO diatom,Pseudo-nitzschia subcurvata, and its co-occurring bacteria. Although vitamin-depleted, axenicPseudo-nitzschiagrew poorly in culture, addition of a co-isolated Roseobacter promoted diatom growth, while addition of a co-isolated Flavobacterium negatively impacted diatom growth. Microscopy revealed both bacterial isolates are physically associated with diatom cells and genome sequencing identified important predicted functions including vitamin synthesis, motility, cell attachment mechanisms, and diverse antimicrobial weapons that could be used for interbacterial competition. These findings revealed the natural coexistence of competing symbiotic strategies of diatom-associated bacteria in the SO, and the utility of this tripartite system, composed of a diatom and two bacterial strains, as a co-culture model to probe ecological-relevant interactions between diatoms andmore »the bacteria that compete for access to the phycosphere.

    « less