skip to main content


Title: Oxides and the high entropy regime: A new mix for engineering physical properties
Abstract Historically, the enthalpy is the criterion for oxide materials discovery and design. In this regime, highly controlled thin film epitaxy can be leveraged to manifest bulk and interfacial phases that are non-existent in bulk equilibrium phase diagrams. With the recent discovery of entropy-stabilized oxides, entropy and disorder engineering has been realized as an orthogonal approach. This has led to the nucleation and rapid growth of research on high-entropy oxides – multicomponent oxides where the configurational entropy is large but its contribution to its stabilization need not be significant or is currently unknown. From current research, it is clear that entropy enhances the chemical solubility of species and can realize new stereochemical configurations which has led to the rapid discovery of new phases and compositions. The research has expanded beyond studies to understand the role of entropy in stabilization and realization of new crystal structures to now include physical properties and the roles of local and global disorder. Here, key observations made regarding the dielectric and magnetic properties are reviewed. These materials have recently been observed to display concerted symmetry breaking, metal-insulator transitions, and magnetism, paving the way for engineering of these and potentially other functional phenomena. Excitingly, the disorder in these oxides allows for new interplay between spin, orbital, charge, and lattice degrees of freedom to design the physical behavior. We also provide a perspective on the state of the field and prospects for entropic oxide materials in applications considering their unique characteristics.  more » « less
Award ID(s):
1847847
NSF-PAR ID:
10211688
Author(s) / Creator(s):
;
Date Published:
Journal Name:
MRS Advances
Volume:
5
Issue:
64
ISSN:
2059-8521
Page Range / eLocation ID:
3419 to 3436
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Entropic stabilization has evolved into a strategy to create new oxide materials and realize novel functional properties engineered through the alloy composition. Achieving an atomistic understanding of these properties to enable their design, however, has been challenging due to the local compositional and structural disorder that underlies their fundamental structure-property relationships. Here, we combine high-throughput atomistic calculations and linear regression algorithms to investigate the role of local configurational and structural disorder on the thermodynamics of vacancy formation in (MgCoNiCuZn)O-based entropy-stabilized oxides (ESOs) and their influence on the electrical properties. We find that the cation-vacancy formation energies decrease with increasing local tensile strain caused by the deviation of the bond lengths in ESOs from the equilibrium bond length in the binary oxides. The oxygen-vacancy formation strongly depends on structural distortions associated with the local configuration of chemical species. Vacancies in ESOs exhibit deep thermodynamic transition levels that inhibit electrical conduction. By applying the charge-neutrality condition, we determine that the equilibrium concentrations of both oxygen and cation vacancies increase with increasing Cu mole fraction. Our results demonstrate that tuning the local chemistry and associated structural distortions by varying alloy composition acts an engineering principle that enables controlled defect formation in multi-component alloys.

     
    more » « less
  2. Abstract

    Compositionally complex materials have demonstrated extraordinary promise for structural robustness in extreme environments. Of these, the most commonly thought of are high entropy alloys, where chemical complexity grants uncommon combinations of hardness, ductility, and thermal resilience. In contrast to these metal–metal bonded systems, the addition of ionic and covalent bonding has led to the discovery of high entropy ceramics (HECs). These materials also possess outstanding structural, thermal, and chemical robustness but with a far greater variety of functional properties which enable access to continuously controllable magnetic, electronic, and optical phenomena. In this experimentally focused perspective, we outline the potential for HECs in functional applications under extreme environments, where intrinsic stability may provide a new path toward inherently hardened device design. Current works on high entropy carbides, actinide bearing ceramics, and high entropy oxides are reviewed in the areas of radiation, high temperature, and corrosion tolerance where the role of local disorder is shown to create pathways toward self-healing and structural robustness. In this context, new strategies for creating future electronic, magnetic, and optical devices to be operated in harsh environments are outlined.

     
    more » « less
  3. Abstract

    Entropy‐stabilized oxide (ESO) research has primarily focused on discovering unprecedented structures, chemistries, and properties in the single‐phase state. However, few studies discuss the impacts of entropy stabilization and secondary phases on functionality and in particular, electrical conductivity. To address this gap, electrical transport mechanisms in the canonical ESO rocksalt (Co,Cu,Mg,Ni,Zn)O are assessed as a function of secondary phase content. When single‐phase, the oxide conducts electrons via Cu+/Cu2+small polarons. After 2 h of heat treatment, Cu‐rich tenorite secondary phases form at some grain boundaries (GBs), enhancing grain interior electronic conductivity by tuning defect chemistry toward higher Cu+carrier concentrations. 24 h of heat treatment yields Cu‐rich tenorite at all GBs, followed by the formation of anisotropic Cu‐rich tenorite and equiaxed Co‐rich spinel secondary phases in grains, further enhancing grain interior electronic conductivity but slowing electronic transport across the tenorite‐rich GBs. Across all samples, the total electrical conductivity increases (and decreases reversibly) by four orders of magnitude with heat‐treatment‐induced phase transformation by tuning the grains’ defect chemistry toward higher carrier concentration and lower migration activation energy. This work demonstrates the potential to selectively grow secondary phases in ESO grains and at GBs, thereby tuning the electrical properties using microstructure design, nanoscale engineering, and heat treatment, paving the way to develop many novel materials.

     
    more » « less
  4. Abstract

    High‐entropy materials defy historical materials design paradigms by leveraging chemical disorder to kinetically stabilize novel crystalline solid solutions comprised of many end‐members. Formulational diversity results in local crystal structures that are seldom found in conventional materials and can strongly influence macroscopic physical properties. Thermodynamically prescribed chemical flexibility provides a means to tune such properties. Additionally, kinetic metastability results in many possible atomic arrangements, including both solid‐solution configurations and heterogeneous phase assemblies, depending on synthesis conditions. Local disorder induced by metastability, and extensive cation solubilities allowed by thermodynamics combine to give many high‐entropy oxide systems utility as electrochemical, magnetic, thermal, dielectric, and optical materials. Though high‐entropy materials research is maturing rapidly, much remains to be understood and many compositions still await discovery, exploration, and implementation.

     
    more » « less
  5. Carbon dioxide-assisted coupling of methane offers an approach to chemically upgrade two greenhouse gases and components of natural gas to produce ethylene and syngas. Prior research on this reaction has concentrated efforts on catalyst discovery, which has indicated that composites comprised of both reducible and basic oxides are especially promising. There is a need for detailed characterization of these bifunctional oxide systems to provide a more fundamental understanding of the active sites and their roles in the reaction. We studied the dependence of physical and electronic properties of Ca-modified ZnO materials on Ca content via X-ray photoelectron and absorption spectroscopies, electron microscopy, and infrared spectroscopic temperature-programmed desorption (IRTPD). It was found that introduction of only 0.6 mol% Ca onto a ZnO surface is necessary to induce significant improvement in the catalytic production of C2 species: C2 selectivity increases from 5% on unmodified ZnO to 58%, at similar conversions. Evidence presented shows that this selectivity increase resultsfrom the formation of an interface between the basic CaO and reducible ZnO phases. The basicity of these interface sites correlates directly with catalytic activity over a wide composition range, and this relationship indicates that moderate CO2 adsorption strength is optimal for CH4 coupling. These results demonstrate, for the first time to our knowledge, a volcano-type relationship between CO2-assisted CH4 coupling activity and catalyst surface basicity, which can inform further catalyst development. 
    more » « less