skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Humanoid Robot Object Perception Approach Using Depth Images
Humanoid robots have had significant research interest in the past two decades. Their classification as mobile manipulators allows them to work in unstructured environments creating new possibilities for human-robot interaction. Object grasping and manipulation are essential and enabling capabilities for mobile humanoid robots that require reliable perception. This paper presents a perception approach using depth images from an RGB-D camera to estimate the work plane and estimate object positions relative to the robot. Results from experiments with a set of object shapes and scenarios are presented.  more » « less
Award ID(s):
1726524
PAR ID:
10212001
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of IEEE National Aerospace and Electronics Conference (NAECON)
Page Range / eLocation ID:
437 to 442
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As the influence of social robots in people’s daily lives grows, research on understanding people’s perception of robots including sociability, trust, acceptance, and preference becomes more pervasive. Research has considered visual, vocal, or tactile cues to express robots’ emotions, whereas little research has provided a holistic view in examining the interactions among different factors influencing emotion perception. We investigated multiple facets of user perception on robots during a conversational task by varying the robots’ voice types, appearances, and emotions. In our experiment, 20 participants interacted with two robots having four different voice types. While participants were reading fairy tales to the robot, the robot gave vocal feedback with seven emotions and the participants evaluated the robot’s profiles through post surveys. The results indicate that (1) the accuracy of emotion perception differed depending on presented emotions, (2) a regular human voice showed higher user preferences and naturalness, (3) but a characterized voice was more appropriate for expressing emotions with significantly higher accuracy in emotion perception, and (4) participants showed significantly higher emotion recognition accuracy with the animal robot than the humanoid robot. A follow-up study ([Formula: see text]) with voice-only conditions confirmed that the importance of embodiment. The results from this study could provide the guidelines needed to design social robots that consider emotional aspects in conversations between robots and users. 
    more » « less
  2. Intelligent robots frequently need to explore the objects in their working environments. Modern sensors have enabled robots to learn object properties via perception of multiple modalities. However, object exploration in the real world poses a challenging trade-off between information gains and exploration action costs. Mixed observability Markov decision process (MOMDP) is a framework for planning under uncertainty, while accounting for both fully and partially observable components of the state. Robot perception frequently has to face such mixed observability. This work enables a robot equipped with an arm to dynamically construct query-oriented MOMDPs for multi-modal predicate identification (MPI) of objects. The robot's behavioral policy is learned from two datasets collected using real robots. Our approach enables a robot to explore object properties in a way that is significantly faster while improving accuracies in comparison to existing methods that rely on hand-coded exploration strategies. 
    more » « less
  3. The attribution of human-like characteristics onto humanoid robots has become a common practice in Human-Robot Interaction by designers and users alike. Robot gendering, the attribution of gender onto a robotic platform via voice, name, physique, or other features is a prevalent technique used to increase aspects of user acceptance of robots. One important factor relating to acceptance is user trust. As robots continue to integrate themselves into common societal roles, it will be critical to evaluate user trust in the robot's ability to perform its job. This paper examines the relationship among occupational gender-roles, user trust and gendered design features of humanoid robots. Results from the study indicate that there was no significant difference in the perception of trust in the robot's competency when considering the gender of the robot. This expands the findings found in prior efforts that suggest performance-based factors have larger influences on user trust than the robot's gender characteristics. In fact, our study suggests that perceived occupational competency is a better predictor for human trust than robot gender or participant gender. As such, gendering in robot design should be considered critically in the context of the application by designers. Such precautions would reduce the potential for robotic technologies to perpetuate societal gender stereotypes. 
    more » « less
  4. As part of a feasibility study, this paper shows the NASA Valkyrie humanoid robot performing an end- to-end improvised explosive device (IED) response task. To demonstrate and evaluate robot capabilities, sub-tasks highlight different locomotion, manipulation, and perception requirements: traversing uneven terrain, passing through a narrow passageway, opening a car door, retrieving a suspected IED, and securing the IED in a total containment vessel (TCV). For each sub-task, a description of the technical approach and the hidden challenges that were overcome during development are presented. The discussion of results, which explicitly includes existing limitations, is aimed at motivating continued research and development to enable practical deployment of humanoid robots for IED response. 
    more » « less
  5. The rapidly increasing capabilities of autonomous mobile robots promise to make them ubiquitous in the coming decade. These robots will continue to enhance efficiency and safety in novel applications such as disaster management, environmental monitoring, bridge inspection, and agricultural inspection. To operate autonomously without constant human intervention, even in remote or hazardous areas, robots must sense, process, and interpret environmental data using only onboard sensing and computation. This capability is made possible by advancements in perception algorithms, allowing these robots to rely primarily on their perception capabilities for navigation tasks. However, tiny robot autonomy is hindered mainly by sensors, memory, and computing due to size, area, weight, and power constraints. The bottleneck in these robots lies in the real-time perception in resource-constrained robots. To enable autonomy in robots of sizes that are less than 100 mm in body length, we draw inspiration from tiny organisms such as insects and hummingbirds, known for their sophisticated perception, navigation, and survival abilities despite their minimal sensor and neural system. This work aims to provide insights into designing a compact and efficient minimal perception framework for tiny autonomous robots from higher cognitive to lower sensor levels. 
    more » « less