skip to main content


Title: Stabilization of Sn Anode through Structural Reconstruction of a Cu–Sn Intermetallic Coating Layer
Abstract

The metallic tin (Sn) anode is a promising candidate for next‐generation lithium‐ion batteries (LIBs) due to its high theoretical capacity and electrical conductivity. However, Sn suffers from severe mechanical degradation caused by large volume changes during lithiation/delithiation, which leads to a rapid capacity decay for LIBs application. Herein, a Cu–Sn (e.g., Cu3Sn) intermetallic coating layer (ICL) is rationally designed to stabilize Sn through a structural reconstruction mechanism. The low activity of the Cu–Sn ICL against lithiation/delithiation enables the gradual separation of the metallic Cu phase from the Cu–Sn ICL, which provides a regulatable and appropriate distribution of Cu to buffer volume change of Sn anode. Concurrently, the homogeneous distribution of the separated Sn together with Cu promotes uniform lithiation/delithiation, mitigating the internal stress. In addition, the residual rigid Cu–Sn intermetallic shows terrific mechanical integrity that resists the plastic deformation during the lithiation/delithiation. As a result, the Sn anode enhanced by the Cu–Sn ICL shows a significant improvement in cycling stability with a dramatically reduced capacity decay rate of 0.03% per cycle for 1000 cycles. The structural reconstruction mechanism in this work shines a light on new materials and structural design that can stabilize high‐performance and high‐volume‐change electrodes for rechargeable batteries and beyond.

 
more » « less
Award ID(s):
1949840
NSF-PAR ID:
10455255
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
42
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Electrode stabilization by surface passivation has been explored as the most crucial step to develop long‐cycle lithium‐ion batteries (LIBs). In this work, functionally graded materials consisting of “conversion‐type” iron‐doped nickel oxyfluoride (NiFeOF) cathode covered with a homologous passivation layer (HPL) are rationally designed for long‐cycle LIBs. The compact and fluorine‐rich HPL plays dual roles in suppressing the volume change of NiFeOF porous cathode and minimizing the dissolution of transition metals during LIBs cycling by forming a structure/composition gradient. The structure and composition of HPL reconstructs during lithiation/delithiation, buffering the volume change and trapping the dissolved transition metals. As a result, a high capacity of 175 mAh g−1(equal to an outstanding volumetric capacity of 936 Ah L−1) with a greatly reduced capacity decay rate of 0.012% per cycle for 1000 cycles is achieved, which is superior to the NiFeOF porous film without HPL and commercially available NiF2‐FeF3powders. The proposed chemical and structure reconstruction mechanism of HPL opens a new avenue for the novel materials development for long‐cycle LIBs.

     
    more » « less
  2.  
    more » « less
  3. Abstract

    Si‐based anodes with a stiff diamond structure usually suffer from sluggish lithiation/delithiation reaction due to low Li‐ion and electronic conductivity. Here, a novel ternary compound ZnSi2P3with a cation‐disordered sphalerite structure, prepared by a facile mechanochemical method, is reported, demonstrating faster Li‐ion and electron transport and greater tolerance to volume change during cycling than the existing Si‐based anodes. A composite electrode consisting of ZnSi2P3and carbon achieves a high initial Coulombic efficiency (92%) and excellent rate capability (950 mAh g−1at 10 A g−1) while maintaining superior cycling stability (1955 mAh g−1after 500 cycles at 300 mA g−1), surpassing the performance of most Si‐ and P‐based anodes ever reported. The remarkable electrochemical performance is attributed to the sphalerite structure that allows fast ion and electron transport and the reversible Li‐storage mechanism involving intercalation and conversion reactions. Moreover, the cation‐disordered sphalerite structure is flexible to ionic substitutions, allowing extension to a family of Zn(Cu)Si2+xP3solid solution anodes (x= 0, 2, 5, 10) with large capacity, high initial Coulombic efficiency, and tunable working potentials, representing attractive anode candidates for next‐generation, high‐performance, and low‐cost Li‐ion batteries.

     
    more » « less
  4. Abstract

    Li‐rich oxide cathodes are of prime importance for the development of high‐energy lithium‐ion batteries (LIBs). Li‐rich layered oxides, however, always undergo irreversible structural evolution, leading to inevitable capacity and voltage decay during cycling. Meanwhile, Li‐rich cation‐disordered rock‐salt oxides usually exhibit sluggish kinetics and inferior cycling stability, despite their firm structure and stable voltage output. Herein, a new Li‐rich rock‐salt oxide Li2Ni1/3Ru2/3O3withFd‐3mspace group, where partial cation‐ordering arrangement exists in cationic sites, is reported. Results demonstrate that a cathode fabricated from Li2Ni1/3Ru2/3O3delivers a large capacity, outstanding rate capability as well as good cycling performance with negligible voltage decay, in contrast to the common cations disordered oxides with space groupFm‐3m. First principle calculations also indicate that rock‐salt oxide with space groupFd‐3mpossesses oxygen activity potential at the state of delithiation, and good kinetics with more 0‐TM (TM = transition metals) percolation networks. In situ Raman results confirm the reversible anionic redox chemistry, confirming O2−/Oevolution during cycles in Li‐rich rock‐salt cathode for the first time. These findings open up the opportunity to design high‐performance oxide cathodes and promote the development of high‐energy LIBs.

     
    more » « less
  5. Abstract

    Layered transition‐metal dichalcogenides (TMDs) have shown promise to replace carbon‐based compounds as suitable anode materials for Lithium‐ion batteries (LIBs) owing to facile intercalation and de‐intercalation of lithium (Li) during charging and discharging, respectively. While the intercalation mechanism of Li in mono‐ and bi‐layer TMDs has’ been thoroughly examined, mechanistic understanding of Li intercalation‐induced phase transformation in bulk or films of TMDs is still largely unexplored. This study investigates possible scenarios during sequential Li intercalation and aims to gain a mechanistic understanding of the phase transformation in bulk MoS2using density functional theory (DFT) calculations. The manuscript examines the role of concentration and distribution of Li‐ions on the formation of dual‐phase 2H‐1T microstructures that have been observed experimentally. The study demonstrates that lithiation would proceed in a systematic layer‐by‐layer manner wherein Li‐ions diffuse into successive interlayer spacings to render local phase transformation of the adjacent MoS2layers from 2H‐to‐1T phase in the multilayered MoS2. This local phase transition is attributed to partial ionization of Li and charge redistribution around the metal atoms and is followed by subsequent lattice straining. In addition, the stability of single‐phase vs. multiphase intercalated microstructures, and the origins of structural changes accompanying Li‐ion insertion are investigated at atomic scales.

     
    more » « less