skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bending behavior of biomimetic scale covered beam with tunable stiffness scales
Abstract Biomimetic scales provide a convenient template to tailor the bending stiffness of the underlying slender substrate due to their mutual sliding after engagement. Scale stiffness can therefore directly impact the substrate behavior, opening a potential avenue for substrate stiffness tunability. Here, we have developed a biomimetic beam, which is covered by tunable stiffness scales. Scale tunability is achieved by specially designed plate like scales consisting of layers of low melting point alloy (LMPA) phase change materials fully enclosed inside a soft polymer. These composite scales can transition between stiff and soft states by straddling the temperatures across LMPA melting points thereby drastically altering stiffness. We experimentally analyze the bending behavior of biomimetic beams covered with tunable stiffness scales of two architectures—one with single enclosure of LMPA and one with two enclosures of different melting point LMPAs. These architectures provide a continuous stiffness change of the underlying substrate post engagement, controlled by the operating temperature. We characterize this response using three-point bending experiments at various temperature profiles. Our results demonstrate for the first time, the pronounced and reversible tunability in the bending behavior of biomimetic scale covered beam, which are strongly dependent on the scale material and architecture. Particularly, it is shown that the bending stiffness of the biomimetic scale covered beam can be actively and reversibly tuned by a factor of up to 7. The developed biomimetic beam has applications in soft robotic grippers, smart segmented armors, deployable structures and soft swimming robots.  more » « less
Award ID(s):
1943886
PAR ID:
10212135
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Stiff scales adorn the exterior surfaces of fishes, snakes, and many reptiles. They provide protection from external piercing attacks and control over global deformation behavior to aid locomotion, slithering, and swimming across a wide range of environmental condition. In this report, we investigate the dynamic behavior of biomimetic scale substrates for further understanding the origins of the nonlinearity that involve various aspect of scales interaction, sliding kinematics, interfacial friction, and their combination. Particularly, we study the vibrational characteristics through an analytical model and numerical investigations for the case of a simply supported scale covered beam. Our results reveal for the first time that biomimetic scale beams exhibit viscous damping behavior even when only Coulomb friction is postulated for free vibrations. We anticipate and quantify the anisotropy in the damping behavior with respect to curvature. We also find that unlike static pure bending where friction increases bending stiffness, a corresponding increase in natural frequency for the dynamic case does not arise for simply supported beam. Since both scale geometry, distribution and interfacial properties can be easily tailored, our study indicates a biomimetic strategy to design exceptional synthetic materials with tailorable damping behavior. 
    more » « less
  2. Currently soft robots primarily rely on pneumatics and geometrical asymmetry to achieve locomotion, which limits their working range, versatility, and other untethered functionalities. In this paper, we introduce a novel approach to achieve locomotion for soft robots through dynamically tunable friction to address these challenges, which is achieved by subsurface stiffness modulation (SSM) of a stimuli-responsive component within composite structures. To demonstrate this, we design and fabricate an elastomeric pad made of polydimethylsiloxane (PDMS), which is embedded with a spiral channel filled with a low melting point alloy (LMPA). Once the LMPA strip is melted upon Joule heating, the compliance of the composite structure increases and the friction between the composite surface and the opposing surface increases. A series of experiments and finite element analysis (FEA) have been performed to characterize the frictional behavior of these composite pads and elucidate the underlying physics dominating the tunable friction. We also demonstrate that when these composite structures are properly integrated into soft crawling robots inspired by inchworms and earthworms, the differences in friction of the two ends of these robots through SSM can potentially be used to generate translational locomotion for untethered crawling robots. 
    more » « less
  3. Herein, a new class of robust bicontinuous elastomer–metal foam composites with highly tunable mechanical stiffness is proposed, fabricated, characterized, and demonstrated. The smart composite is a bicontinuous network of two foams, one metallic made of a low melting point alloy (LMPA) and the other elastomeric made of polydimethylsiloxane (PDMS). The stiffness of the composite can be tuned by inducing phase changes in its LMPA component. Below the melting point of the LMPA, Young's modulus of the smart composites is ≈1 GPa, whereas above the melting point of the LMPA it is ≈1 MPa. Thus, a sharp stiffness change of ≈1000× can be realized through the proposed bicontinuous foam composite structure, which is higher than all available robust smart composites. Effective medium theory is also used to predict the Young's modulus of the bicontinuous smart composites, which generates reasonable agreement with experimentally measured Young's modulus of the smart composites. Finally, the use of these smart materials as a smart joint in a robotic arm is also demonstrated. 
    more » « less
  4. Tunable dry adhesion is a crucial mechanism in compliant manipulation. The gripping force can be controlled by reversibly varying the physical properties (e.g., stiffness) of the composite via external stimuli. The maximal gripping force Fmaxand its tunability depend on, among other factors, the stress distribution on the gripping interface and its fracture dynamics (during detaching), which in turn are determined by the composite microstructure. Here, we present a computational framework for the modeling and design of a class of binary smart composites containing a porous low-melting-point alloy (LMPA) phase and a polymer phase, in order to achieve desirable dynamically tunable dry adhesion. We employ spatial correlation functions to quantify, model, and represent the complex bi-continuous microstructure of the composites, from which a wide spectrum of realistic virtual 3D composite microstructures can be generated using stochastic optimization. A recently developed volume-compensated lattice-particle method is then employed to model the dynamic interfacial fracture process, where the gripper is detached from the object, to compute Fmaxfor different composite microstructures. We focus on the interface defect tuning mechanism for dry adhesion tuning enabled by the composite, and find that for an optimal microstructure among the ones studied here, a tenfold dynamic tuning of Fmaxbefore and after the thermal expansion of the LMPA phase can be achieved. Our computational results can provide valuable guidance for experimental fabrication of the LMPA–polymer composites. 
    more » « less
  5. This paper presents an initial step towards a new class of soft robotics materials, where localized, geometric patterning of smart materials can exhibit discrete levels of stiffness through the combinations of smart materials used. This work is inspired by a variety of biological systems where actuation is accomplished by modulating the local stiffness in conjunction with muscle contractions. Whereas most biological systems use hydrostatic mechanisms to achieve stiffness variability, and many robotic systems have mimicked this mechanism, this work aims to use smart materials to achieve this stiffness variability. Here we present the compositing of the low melting point Field's metal, shape memory alloy Nitinol, and a low melting point thermoplastic Polycaprolactone (PCL), composited in simple beam structure within silicone rubber. The comparison in bending stiffnesses at different temperatures, which reside between the activation temperatures of the composited smart materials demonstrates the ability to achieve discrete levels of stiffnesses within the soft robotic tissue. 
    more » « less