Using archived social media data, the language signatures of people going through breakups were mapped. Text analyses were conducted on 1,027,541 posts from 6,803 Reddit users who had posted about their breakups. The posts include users’ Reddit history in the 2 y surrounding their breakups across the various domains of their life, not just posts pertaining to their relationship. Language markers of an impending breakup were evident 3 mo before the event, peaking on the week of the breakup and returning to baseline 6 mo later. Signs included an increase in I-words, we-words, and cognitive processing words (characteristic of depression, collective focus, and the meaning-making process, respectively) and drops in analytic thinking (indicating more personal and informal language). The patterns held even when people were posting to groups unrelated to breakups and other relationship topics. People who posted about their breakup for longer time periods were less well-adjusted a year after their breakup compared to short-term posters. The language patterns seen for breakups replicated for users going through divorce (
- Publication Date:
- NSF-PAR ID:
- 10212399
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 7
- Page Range or eLocation-ID:
- Article No. e2017154118
- ISSN:
- 0027-8424
- Publisher:
- Proceedings of the National Academy of Sciences
- Sponsoring Org:
- National Science Foundation
More Like this
-
Introduction Social media has created opportunities for children to gather social support online (Blackwell et al., 2016; Gonzales, 2017; Jackson, Bailey, & Foucault Welles, 2018; Khasawneh, Rogers, Bertrand, Madathil, & Gramopadhye, 2019; Ponathil, Agnisarman, Khasawneh, Narasimha, & Madathil, 2017). However, social media also has the potential to expose children and adolescents to undesirable behaviors. Research showed that social media can be used to harass, discriminate (Fritz & Gonzales, 2018), dox (Wood, Rose, & Thompson, 2018), and socially disenfranchise children (Page, Wisniewski, Knijnenburg, & Namara, 2018). Other research proposes that social media use might be correlated to the significant increase inmore »
-
In the United States, every state has a tourism website. These sites highlight the main attractions of the state, travel tips, and blog posts among other relevant information. The funding for these websites often comes from occupancy taxes, a form of taxes that comes from tourists who stay in hotels and visit attractions. Therefore, current and past tourists fund the efforts to draw future tourists into the state. Since state tourism is funded by the success of past tourism efforts, it is important for researchers to spend their time and resources on finding out what efforts were successful and whichmore »
-
Background Internet data can be used to improve infectious disease models. However, the representativeness and individual-level validity of internet-derived measures are largely unexplored as this requires ground truth data for study. Objective This study sought to identify relationships between Web-based behaviors and/or conversation topics and health status using a ground truth, survey-based dataset. Methods This study leveraged a unique dataset of self-reported surveys, microbiological laboratory tests, and social media data from the same individuals toward understanding the validity of individual-level constructs pertaining to influenza-like illness in social media data. Logistic regression models were used to identify illness in Twitter postsmore »
-
Abstract: 100 words Jurors are increasingly exposed to scientific information in the courtroom. To determine whether providing jurors with gist information would assist in their ability to make well-informed decisions, the present experiment utilized a Fuzzy Trace Theory-inspired intervention and tested it against traditional legal safeguards (i.e., judge instructions) by varying the scientific quality of the evidence. The results indicate that jurors who viewed high quality evidence rated the scientific evidence significantly higher than those who viewed low quality evidence, but were unable to moderate the credibility of the expert witness and apply damages appropriately resulting in poor calibration. Summary:more »
-
Abstract
The PoseASL dataset consists of color and depth videos collected from ASL signers at the Linguistic and Assistive Technologies Laboratory under the direction of Matt Huenerfauth, as part of a collaborative research project with researchers at the Rochester Institute of Technology, Boston University, and the University of Pennsylvania. Access: After becoming an authorized user of Databrary, please contact Matt Huenerfauth if you have difficulty accessing this volume. We have collected a new dataset consisting of color and depth videos of fluent American Sign Language signers performing sequences ASL signs and sentences. Given interest among sign-recognition and other computer-vision researchers