skip to main content

Title: Experimental study of the $ \gamma p \rightarrow K^{0}\Sigma^{+}$, $ \gamma n \rightarrow K^{0} \Lambda$, and $ \gamma n \rightarrow K^{0} \Sigma^{0}$ reactions at the Mainz Microtron
Abstract. This work measured $ \mathrm{d}\sigma/\mathrm{d}\Omega$ d σ / d Ω for neutral kaon photoproduction reactions from threshold up to a c.m. energy of 1855MeV, focussing specifically on the $ \gamma p\rightarrow K^0\Sigma^+$ γ p → K 0 Σ + , $ \gamma n\rightarrow K^0\Lambda$ γ n → K 0 Λ , and $ \gamma n\rightarrow K^0 \Sigma^0$ γ n → K 0 Σ 0 reactions. Our results for $ \gamma n\rightarrow K^0 \Sigma^0$ γ n → K 0 Σ 0 are the first-ever measurements for that reaction. These data will provide insight into the properties of $ N^{\ast}$ N * resonances and, in particular, will lead to an improved knowledge about those states that couple only weakly to the $ \pi N$ π N channel. Integrated cross sections were extracted by fitting the differential cross sections for each reaction as a series of Legendre polynomials and our results are compared with prior experimental results and theoretical predictions.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
2012940 1714833
Publication Date:
NSF-PAR ID:
10212415
Journal Name:
The European Physical Journal A
Volume:
55
Issue:
11
ISSN:
1434-6001
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The production of Z boson pairs in proton–proton ( $${\mathrm{p}} {\mathrm{p}} $$ p p ) collisions, $${{\mathrm{p}} {\mathrm{p}} \rightarrow ({\mathrm{Z}}/\gamma ^*)({\mathrm{Z}}/\gamma ^*) \rightarrow 2\ell 2\ell '}$$ p p → ( Z / γ ∗ ) ( Z / γ ∗ ) → 2 ℓ 2 ℓ ′ , where $${\ell ,\ell ' = {\mathrm{e}}}$$ ℓ , ℓ ′ = e or $${{\upmu }}$$ μ , is studied at a center-of-mass energy of 13 $$\,\text {TeV}$$ TeV with the CMS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 137 $$\,\text {fb}^{-1}$$ fb - 1more », collected during 2016–2018. The $${\mathrm{Z}} {\mathrm{Z}} $$ Z Z production cross section, $$\sigma _{\text {tot}} ({\mathrm{p}} {\mathrm{p}} \rightarrow {\mathrm{Z}} {\mathrm{Z}} ) = 17.4 \pm 0.3 \,\text {(stat)} \pm 0.5 \,\text {(syst)} \pm 0.4 \,\text {(theo)} \pm 0.3 \,\text {(lumi)} \text { pb} $$ σ tot ( p p → Z Z ) = 17.4 ± 0.3 (stat) ± 0.5 (syst) ± 0.4 (theo) ± 0.3 (lumi) pb , measured for events with two pairs of opposite-sign, same-flavor leptons produced in the mass region $${60< m_{\ell ^+\ell ^-} < 120\,\text {GeV}}$$ 60 < m ℓ + ℓ - < 120 GeV is consistent with standard model predictions. Differential cross sections are also measured and agree with theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous $${\mathrm{Z}} {\mathrm{Z}} {\mathrm{Z}} $$ Z Z Z and $${{\mathrm{Z}} {\mathrm{Z}} \gamma }$$ Z Z γ couplings.« less
  2. A bstract Using a data sample of 980 fb − 1 collected with the Belle detector at the KEKB asymmetric-energy e + e − collider, we study the processes of $$ {\Xi}_c^0\to \Lambda {\overline{K}}^{\ast 0} $$ Ξ c 0 → Λ K ¯ ∗ 0 , $$ {\Xi}_c^0\to {\Sigma}^0{\overline{K}}^{\ast 0} $$ Ξ c 0 → Σ 0 K ¯ ∗ 0 , and $$ {\Xi}_c^0\to {\Sigma}^{+}{K}^{\ast -} $$ Ξ c 0 → Σ + K ∗ − for the first time. The relative branching ratios to the normalization mode of $$ {\Xi}_c^0\to {\Xi}^{-}{\pi}^{+} $$ Ξ c 0 → Ξ −more »π + are measured to be $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to \Lambda {\overline{K}}^{\ast 0}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.18\pm 0.02\left(\mathrm{stat}.\right)\pm 0.01\left(\mathrm{syst}.\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Sigma}^0{\overline{K}}^{\ast 0}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.69\pm 0.03\left(\mathrm{stat}.\right)\pm 0.03\left(\mathrm{syst}.\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Sigma}^{+}{K}^{\ast -}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.34\pm 0.06\left(\mathrm{stat}.\right)\pm 0.02\left(\mathrm{syst}.\right),\end{array}} $$ B Ξ c 0 → Λ K ¯ ∗ 0 / B Ξ c 0 → Ξ − π + = 0.18 ± 0.02 stat . ± 0.01 syst . , B Ξ c 0 → Σ 0 K ¯ ∗ 0 / B Ξ c 0 → Ξ − π + = 0.69 ± 0.03 stat . ± 0.03 syst . , B Ξ c 0 → Σ + K ∗ − / B Ξ c 0 → Ξ − π + = 0.34 ± 0.06 stat . ± 0.02 syst . , where the uncertainties are statistical and systematic, respectively. We obtain $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to \Lambda {\overline{K}}^{\ast 0}\right)=\left(3.3\pm 0.3\left(\mathrm{stat}.\right)\pm 0.2\left(\mathrm{syst}.\right)\pm 1.0\left(\mathrm{ref}.\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Sigma}^0{\overline{K}}^{\ast 0}\right)=\left(12.4\pm 0.5\left(\mathrm{stat}.\right)\pm 0.5\left(\mathrm{syst}.\right)\pm 3.6\left(\mathrm{ref}.\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Sigma}^{+}{K}^{\ast 0}\right)=\left(6.1\pm 1.0\left(\mathrm{stat}.\right)\pm 0.4\left(\mathrm{syst}.\right)\pm 1.8\left(\mathrm{ref}.\right)\right)\times {10}^{-3},\end{array}} $$ B Ξ c 0 → Λ K ¯ ∗ 0 = 3.3 ± 0.3 stat . ± 0.2 syst . ± 1.0 ref . × 10 − 3 , B Ξ c 0 → Σ 0 K ¯ ∗ 0 = 12.4 ± 0.5 stat . ± 0.5 syst . ± 3.6 ref . × 10 − 3 , B Ξ c 0 → Σ + K ∗ 0 = 6.1 ± 1.0 stat . ± 0.4 syst . ± 1.8 ref . × 10 − 3 , where the uncertainties are statistical, systematic, and from $$ \mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right) $$ B Ξ c 0 → Ξ − π + , respectively. The asymmetry parameters $$ \alpha \left({\Xi}_c^0\to \Lambda {\overline{K}}^{\ast 0}\right) $$ α Ξ c 0 → Λ K ¯ ∗ 0 and $$ \alpha \left({\Xi}_c^0\to {\Sigma}^{+}{K}^{\ast -}\right) $$ α Ξ c 0 → Σ + K ∗ − are 0 . 15 ± 0 . 22(stat . ) ± 0 . 04(syst . ) and − 0 . 52 ± 0 . 30(stat . ) ± 0 . 02(syst . ), respectively, where the uncertainties are statistical followed by systematic.« less
  3. A bstract The p T -differential production cross sections of prompt and non-prompt (produced in beauty-hadron decays) D mesons were measured by the ALICE experiment at midrapidity ( | y | < 0 . 5) in proton-proton collisions at $$ \sqrt{s} $$ s = 5 . 02 TeV. The data sample used in the analysis corresponds to an integrated luminosity of (19 . 3 ± 0 . 4) nb − 1 . D mesons were reconstructed from their decays D 0 → K − π + , D + → K − π + π + , and $$ {\mathrm{D}}_{\mathrm{s}}^{+}\tomore »\upphi {\uppi}^{+}\to {\mathrm{K}}^{-}{\mathrm{K}}^{+}{\uppi}^{+} $$ D s + → ϕ π + → K − K + π + and their charge conjugates. Compared to previous measurements in the same rapidity region, the cross sections of prompt D + and $$ {\mathrm{D}}_{\mathrm{s}}^{+} $$ D s + mesons have an extended p T coverage and total uncertainties reduced by a factor ranging from 1.05 to 1.6, depending on p T , allowing for a more precise determination of their p T -integrated cross sections. The results are well described by perturbative QCD calculations. The fragmentation fraction of heavy quarks to strange mesons divided by the one to non-strange mesons, f s / ( f u + f d ), is compatible for charm and beauty quarks and with previous measurements at different centre-of-mass energies and collision systems. The $$ \mathrm{b}\overline{\mathrm{b}} $$ b b ¯ production cross section per rapidity unit at midrapidity, estimated from non-prompt D-meson measurements, is $$ \mathrm{d}{\sigma}_{\mathrm{b}\overline{\mathrm{b}}}/\mathrm{d}y\left|{}_{\left|\mathrm{y}\right|<0.5}=34.5\pm 2.4{\left(\mathrm{stat}\right)}_{-2.9}^{+4.7}\left(\mathrm{tot}.\mathrm{syst}\right)\right. $$ d σ b b ¯ / d y y < 0.5 = 34.5 ± 2.4 stat − 2.9 + 4.7 tot . syst μb. It is compatible with previous measurements at the same centre-of-mass energy and with the cross section pre- dicted by perturbative QCD calculations.« less
  4. Abstract A measurement of the $$ B_{s}^{0} \rightarrow J/\psi \phi $$ B s 0 → J / ψ ϕ decay parameters using $$ 80.5\, \mathrm {fb^{-1}} $$ 80.5 fb - 1 of integrated luminosity collected with the ATLAS detector from 13  $$\text {Te}\text {V}$$ Te proton–proton collisions at the LHC is presented. The measured parameters include the CP -violating phase $$\phi _{s} $$ ϕ s , the width difference $$ \Delta \Gamma _{s}$$ Δ Γ s between the $$B_{s}^{0}$$ B s 0 meson mass eigenstates and the average decay width $$ \Gamma _{s}$$ Γ s . The values measured formore »the physical parameters are combined with those from $$ 19.2\, \mathrm {fb^{-1}} $$ 19.2 fb - 1 of 7 and 8  $$\text {Te}\text {V}$$ Te data, leading to the following: $$\begin{aligned} \phi _{s}= & {} -0.087 \pm 0.036 ~\mathrm {(stat.)} \pm 0.021 ~\mathrm {(syst.)~rad} \\ \Delta \Gamma _{s}= & {} 0.0657 \pm 0.0043 ~\mathrm {(stat.)}\pm 0.0037 ~\mathrm {(syst.)~ps}^{-1} \\ \Gamma _{s}= & {} 0.6703 \pm 0.0014 ~\mathrm {(stat.)}\pm 0.0018 ~\mathrm {(syst.)~ps}^{-1} \end{aligned}$$ ϕ s = - 0.087 ± 0.036 ( stat . ) ± 0.021 ( syst . ) rad Δ Γ s = 0.0657 ± 0.0043 ( stat . ) ± 0.0037 ( syst . ) ps - 1 Γ s = 0.6703 ± 0.0014 ( stat . ) ± 0.0018 ( syst . ) ps - 1 Results for $$\phi _{s} $$ ϕ s and $$ \Delta \Gamma _{s}$$ Δ Γ s are also presented as 68% confidence level contours in the $$\phi _{s} $$ ϕ s – $$ \Delta \Gamma _{s}$$ Δ Γ s plane. Furthermore the transversity amplitudes and corresponding strong phases are measured. $$\phi _{s} $$ ϕ s and $$ \Delta \Gamma _{s}$$ Δ Γ s measurements are in agreement with the Standard Model predictions.« less
  5. A bstract In this paper, we explore the impact of extra radiation on predictions of $$ pp\to \mathrm{t}\overline{\mathrm{t}}\mathrm{X},\mathrm{X}=\mathrm{h}/{\mathrm{W}}^{\pm }/\mathrm{Z} $$ pp → t t ¯ X , X = h / W ± / Z processes within the dimension-6 SMEFT framework. While full next-to-leading order calculations are of course preferred, they are not always practical, and so it is useful to be able to capture the impacts of extra radiation using leading-order matrix elements matched to the parton shower and merged. While a matched/merged leading-order calculation for $$ \mathrm{t}\overline{\mathrm{t}}\mathrm{X} $$ t t ¯ X is not expected to reproduce themore »next-to-leading order inclusive cross section precisely, we show that it does capture the relative impact of the EFT effects by considering the ratio of matched SMEFT inclusive cross sections to Standard Model values, $$ {\sigma}_{\mathrm{SM}\mathrm{EFT}}\left(\mathrm{t}\overline{\mathrm{t}}\mathrm{X}+\mathrm{j}\right)/{\sigma}_{\mathrm{SM}}\left(\mathrm{t}\overline{\mathrm{t}}\mathrm{X}+\mathrm{j}\right)\equiv \mu $$ σ SMEFT t t ¯ X + j / σ SM t t ¯ X + j ≡ μ . Furthermore, we compare leading order calculations with and without extra radiation and find several cases, such as the effect of the operator $$ \left({\varphi}^{\dagger }i{\overleftrightarrow{D}}_{\mu}\varphi \right)\left(\overline{t}{\gamma}^{\mu }t\right) $$ φ † i D ↔ μ φ t ¯ γ μ t on $$ \mathrm{t}\overline{\mathrm{t}}\mathrm{h} $$ t t ¯ h and $$ \mathrm{t}\overline{\mathrm{t}}\mathrm{W} $$ t t ¯ W , for which the relative cross section prediction increases by more than 10% — significantly larger than the uncertainty derived by varying the input scales in the calculation, including the additional scales required for matching and merging. Being leading order at heart, matching and merging can be applied to all operators and processes relevant to $$ pp\to \mathrm{t}\overline{\mathrm{t}}\mathrm{X},\mathrm{X}=\mathrm{h}/{\mathrm{W}}^{\pm }/\mathrm{Z}+\mathrm{jet} $$ pp → t t ¯ X , X = h / W ± / Z + jet , is computationally fast and not susceptible to negative weights. Therefore, it is a useful approach in $$ \mathrm{t}\overline{\mathrm{t}}\mathrm{X} $$ t t ¯ X + jet studies where complete next-to-leading order results are currently unavailable or unwieldy.« less