skip to main content


Title: Chain‐growth polycondensation via the substituent effect: Investigation of the monomer structure on synthesis of poly(N‐octyl‐benzamide)
Abstract

A systematic study of the behavior of different leaving groups on a variety of ester‐based monomers was performed for the chain‐growth polycondensation synthesis of poly(N‐octyl benzamide). Linear and branched alkane esters were compared with their phenyl analogs using both computational and experimental methods. Kinetic experiments along with qualitative solubility observations were used, with the aid of nuclear magnetic resonance spectroscopy and gel‐permeation chromatography, to determine progress of the reaction, molecular weights, and molecular weight distributions. It was found that the reactivity of the monomer's ester group depends more on the stability of the leaving alkoxide than the electrophilicity of the carbonyl carbon, which contradicts previous literature. The order of reactivity increases for the alkyl esters with decreasing steric hindrance and decreasing pKa of the substituent. For the phenyl ester derivatives, the more electron withdrawing character of a para substituent increases the reactivity of the ester group, due to the higher resonance stabilization of the leaving phenoxide anion, not due to an increase in the electrophilicity of the carbonyl carbon.

 
more » « less
Award ID(s):
2024448
NSF-PAR ID:
10453520
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
58
Issue:
17
ISSN:
2642-4150
Page Range / eLocation ID:
p. 2389-2406
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The synthesis of alkylphosphine-substituted α-diimine (DI) ligands and their subsequent addition to Ni(COD) 2 allowed for the preparation of ( iPr2PPr DI)Ni and ( tBu2PPr DI)Ni . The solid state structures of both compounds were found to feature a distorted tetrahedral geometry that is largely consistent with the reported structure of the diphenylphosphine-substituted variant, ( Ph2PPr DI)Ni . To explore and optimize the synthetic utility of this catalyst class, all three compounds were screened for benzaldehyde hydrosilylation activity at 1.0 mol% loading over 3 h at 25 °C. Notably, ( Ph2PPr DI)Ni was found to be the most efficient catalyst while phenyl silane was the most effective reductant. A broad scope of aldehydes and ketones were then hydrosilylated, and the silyl ether products were hydrolyzed to afford alcohols in good yield. When attempts were made to explore ester reduction, inefficient dihydrosilylation was noted for ethyl acetate and no reaction was observed for several additional substrates. However, when an equimolar solution of allyl acetate and phenyl silane was added to 1.0 mol% ( Ph2PPr DI)Ni , complete ester C–O bond hydrosilylation was observed within 30 min at 25 °C to generate propylene and PhSi(OAc) 3 . The scope of this reaction was expanded to include six additional allyl esters, and under neat conditions, turnover frequencies of up to 990 h −1 were achieved. This activity is believed to be the highest reported for transition metal-catalyzed ester C–O bond hydrosilylation. Proposed mechanisms for ( Ph2PPr DI)Ni -mediated carbonyl and allyl ester C–O bond hydrosilylation are also discussed. 
    more » « less
  2. Several metal-free, nonaqueous, disproportionation redox-flow-battery chemistries based on electrochemically active organic molecules are presented. The electrochemistry of 9,10-diphenylanthracene (DPA), a polycyclic aromatic compound, involves two reversible redox couples separated by more than 3 V, which are associated with electrochemical disproportionation of the neutral molecule. Nonaqueous solvents are investigated with the dual aims of realizing this high voltage in a battery cell and maximizing active-species solubility. Functionalized DPA analogues are synthesized and shown to exhibit electrochemical responses similar to pristine DPA; appending diethyleneglycoxy esters on each phenyl group to form DdPA (9,10-Bis(4-(2-(2-methoxyethoxy)ethoxy)carbonyl-phenyl)anthracene) improves solubility over DPA by a factor of 20 in acetonitrile and 5 in dimethoxyethane. The 0.21 M maximum concentration of DdPA in dimethoxyethane suggests an energy density of 8 Wh l−1, which begins to approach the energy density of state-of-the-art aqueous RFBs. Charge/discharge of a stagnant one-dimensional cell delivers the highest cell voltages from an organic single-active-species RFB chemistry yet reported. Energy and power efficiencies for DPA in dimethoxyethane and DdPA in acetonitrile are similar to nonaqueous vanadium acetylacetonate in cells of similar construction.

     
    more » « less
  3. The experimentally measured rates of solvolysis of 2-chloroethoxycarbonyl chloride (2-chloroethyl chloroformate, 3), 2-chloroethoxycarbonyl p-toluenesufonate (5), and phenoxycarbonyl p-toluenesulfonate (6) were followed at 25.0 °C in various pure and binary aqueous-organic solvents with varying degrees of polarity. An analysis of the rate constants for 3, 5, and 6, was carried out using the two-term extended Grunwald-Winstein equation and comparisons are made to the previously published results for ethyl and phenyl chloroformate esters. The kOTS/kCl rate ratios and the Grunwald-Winstein l/m ratios indicate the probability of a dominant bimolecular carbonyl-addition pathway in the more nucleophilic solvents. Nevertheless in 3 and 5, in the strongly hydrogen-bonding 70% and 50% HFIP mixtures, a side-by-side ionization mechanism is favored. Keywords: solvolysis, carbonyl-addition, phenyl chloroformate, ethyl chloroformate, 2-chloroethyl chloroformate, 2-chloroethoxycarbonyl p-toluenesulfonate, phenoxycarbonyl p-toluenesulfonate 
    more » « less
  4. Abstract

    Rapid cellular uptake of synthetic molecules remains a challenge, and the motif frequently employed to generate prodrugs, succinic ester, unfortunately lowers the efficacy of the desired drugs due to their slow ester hydrolysis and low cell entry. Here we show that succinic ester‐containing diglycine drastically boosts the cellular uptake of supramolecular assemblies or prodrugs. Specifically, autohydrolysis of the diglycine‐activated succinic esters turns the nanofibers of the conjugates of succinic ester and self‐assembling motif into nanoparticles for fast cellular uptake. The autohydrolysis of diglycine‐activated succinic esters and drug conjugates also restores the efficacy of the drugs. 2D nuclear magnetic resonance (NMR) suggests that a “U‐turn” of diglycine favors intramolecular hydrolysis of diglycine‐activated succinic esters to promote autohydrolysis. As an example of rapid autohydrolysis of diglycine‐activated succinic esters for instant cellular uptake, this work illustrates a nonenzymatic bond cleavage approach to develop effective therapeutics for intracellular targeting.

     
    more » « less
  5. null (Ed.)
    Recent research has highlighted the key role played by the electron affinity of the active metal-nitrene/imido oxidant as the driving force in nitrene additions to olefins to afford valuable aziridines. The present work showcases a library of Co(II) reagents that, unlike the previously examined Mn(II) and Fe(II) analogues, demonstrate reactivity trends in olefin aziridinations that cannot be solely explained by the electron affinity criterion. A family of Co(II) catalysts (17 members) has been synthesized with the assistance of a trisphenylamido-amine scaffold decorated by various alkyl, aryl, and acyl groups attached to the equatorial amidos. Single-crystal X-ray diffraction analysis, cyclic voltammetry and EPR data reveal that the high-spin Co(II) sites (S = 3/2) feature a minimal [N3N] coordination and span a range of 1.4 V in redox potentials. Surprisingly, the Co(II)-mediated aziridination of styrene demonstrates reactivity patterns that deviate from those anticipated by the relevant electrophilicities of the putative metal nitrenes. The representative L4Co catalyst (−COCMe3 arm) is operating faster than the L8Co analogue (−COCF3 arm), in spite of diminished metal-nitrene electrophilicity. Mechanistic data (Hammett plots, KIE, stereocontrol studies) reveal that although both reagents follow a two-step reactivity path (turnover-limiting metal-nitrene addition to the Cb atom of styrene, followed by product-determining ring-closure), the L4Co catalyst is associated with lower energy barriers in both steps. DFT calculations indicate that the putative [L4Co]NTs and [L8Co]NTs species are electronically distinct, inasmuch as the former exhibits a single-electron oxidized ligand arm. In addition, DFT calculations suggest that including London dispersion corrections for L4Co (due to the polarizability of the tert-Bu substituent) can provide significant stabilization of the turnover-limiting transition state. This study highlights how small ligand modifications can generate stereoelectronic variants that in certain cases are even capable of overriding the preponderance of the metal-nitrene electrophilicity as a driving force. 
    more » « less