Atmospheric aerosols significantly offset positive radiative forcing due to their contributions as cloud condensation nuclei (CCN) and ice nucleating particles (INPs). The cloud-aerosol-precipitation interactions in the atmosphere are determined by physical and chemical properties of aerosol particles, which can undergo many cycles of droplet activation and subsequent drying before dry or wet deposition from the atmosphere. Secondary organic aerosol (SOA) is an abundant class of aerosol and has been previously shown to contribute to aerosol formed from cloud processing. Isoprene-derived secondary organic aerosol SOA (iSOA) is a particularly important class of aerosol involved in cloud processing. iSOA has both soluble and insoluble components, but there has been a measurement gap in characterizing the insoluble components, as most analyses have focused on soluble components. These measurements are needed as previous research has suggested that insoluble components could be important with respect to CCN and INP formation. Herein, we analyze the insoluble components of SOA generated from the reactive uptake of IEPOX onto acidic seed particles (ammonium sulfate + sulfuric acid at different ratios for different pH conditions) in an atmospheric chamber. We characterize the size distributions and chemical composition, using NanoParticle Tracking Analysis (NTA), Raman microspectroscopy and atomic force microscopy infrared (AFM-IR) spectroscopy as a function of sulfate aerosol seed pH. These insights may help understand aerosol properties after cloud cycling in the atmosphere.
more »
« less
A biogenic secondary organic aerosol source of cirrus ice nucleating particles
Abstract Atmospheric ice nucleating particles (INPs) influence global climate by altering cloud formation, lifetime, and precipitation efficiency. The role of secondary organic aerosol (SOA) material as a source of INPs in the ambient atmosphere has not been well defined. Here, we demonstrate the potential for biogenic SOA to activate as depositional INPs in the upper troposphere by combining field measurements with laboratory experiments. Ambient INPs were measured in a remote mountaintop location at –46 °C and an ice supersaturation of 30% with concentrations ranging from 0.1 to 70 L –1 . Concentrations of depositional INPs were positively correlated with the mass fractions and loadings of isoprene-derived secondary organic aerosols. Compositional analysis of ice residuals showed that ambient particles with isoprene-derived SOA material can act as depositional ice nuclei. Laboratory experiments further demonstrated the ability of isoprene-derived SOA to nucleate ice under a range of atmospheric conditions. We further show that ambient concentrations of isoprene-derived SOA can be competitive with other INP sources. This demonstrates that isoprene and potentially other biogenically-derived SOA materials could influence cirrus formation and properties.
more »
« less
- PAR ID:
- 10212472
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Isoprene is one of the most common biogenic volatile organic compounds (BVOC) in the atmosphere, produced by many plants. Isoprene undergoes oxidation to form gaseous isoprene epoxydiols (IEPOX) under low-NOx conditions, which can lead to the formation of secondary organic aerosol (SOA) particles. SOA-containing particles affect climate by scattering and absorbing solar radiation or acting as cloud condensation nuclei (CCN). High concentrations of SOA are also associated with adverse health impacts in people. While in the atmosphere, IEPOX SOA particles continue to undergo reactions with atmospheric oxidants, including hydroxyl radical (OH). To isolate and probe this process, we studied atmospheric chemical processes in an aerosol chamber to better understand the evolution of heterogeneous OH oxidation of IEPOX-derived SOA particles. Since very little is understood about the structural and spectroscopic properties because of the complexity of their many sources and atmospheric processing, individual particle measurements are necessary to provide better understanding of the composition of IEPOX SOA. We injected particles composed of mixtures of ammonium sulfate and sulfuric acid across a range of acidities(PH = 0.5 – 2.5) and gas-phase IEPOX into the chamber to generate SOA. The SOA particles were then sent to an oxidation flow reactor, and exposed to different OH concentrations representative of aging of a number of days. We kept relative humidity (RH) constant at ~65%, the temperature was ~23 °C, and levels of oxidation were controlled by adjusting lamp intensity. After oxidized SOA was impacted on quartz substrates, we used single-particle Raman microspectroscopy to identify their functional group compositions. From the Raman vibrational spectra of submicron particles (~500-1000 nm aerodynamic diameter), we observed a distinct difference in core-shell morphology and composition: an organic outer layer and an aqueous-inorganic core. The core also has significantly more CH-stretch than the shell. Small changes were also observed with increasing oxidation, which are important to consider when predicting SOA particle evolution in the atmosphere.more » « less
-
Recent studies have found concentrations of reactive chlorine species to be higher than expected, suggesting that atmospheric chlorine chemistry is more extensive than previously thought. Chlorine radicals can interact with hydroperoxy (HOx) radicals and nitrogen oxides (NOx) to alter the oxidative capacity of the atmosphere. They are known to rapidly oxidize a wide range of volatile organic compounds (VOCs) found in the atmosphere, yet little is known about secondary organic aerosol (SOA) formation from chlorine-initiated photooxidation and its atmospheric implications. Environmental chamber experiments were carried out under low-NOx conditions with isoprene and chlorine as primary VOC and oxidant sources. Upon complete isoprene consumption, observed SOA yields ranged from 7 to 36 %, decreasing with extended photooxidation and SOA aging. Formation of particulate organochloride was observed. A high-resolution time-of-flight chemical ionization mass spectrometer was used to determine the molecular composition of gas-phase species using iodide–water and hydronium–water cluster ionization. Multi-generational chemistry was observed, including ions consistent with hydroperoxides, chloroalkyl hydroperoxides, isoprene-derived epoxydiol (IEPOX), and hypochlorous acid (HOCl), evident of secondary OH production and resulting chemistry from Cl-initiated reactions. This is the first reported study of SOA formation from chlorine-initiated oxidation of isoprene. Results suggest that tropospheric chlorine chemistry could contribute significantly to organic aerosol loading.more » « less
-
ABSTRACT: Isoprene, the most abundant nonmethane volatile organic compound in the atmosphere, undergoes photochemical reactions with hydroxyl radical (•OH), a major sink for isoprene, leading to the formation of secondary organic aerosol (SOA). Using a Vocus Chemical Ionization Mass Spectrometer with ammonium-adduct ions (Vocus NH4+ CIMS), this study used the positive ion mode to quantify the yields and time-dependent reactiveuptake of oxidized volatile organic compounds (OVOCs) produced from •OH-initiated oxidation of isoprene under dry conditions. Molar gas-phase yields of key oxidation products were constrained using sensitivities derived from a voltage scan of the front and back end of the Vocus ion−molecule reactor region. Carefully designed chamber experiments measured uptake coefficients (γ) for key isoprene-derived oxidation products onto acidic sulfate particles. The γ values for both C5H10O3 isomers (IEPOX/ISOPOOH) and C5H8O4, another epoxy species from isoprene photo-oxidation, rapidly decreased as the SOA coating thickness increased, demonstrating a self-limiting effect. Despite ISOPOOH/IEPOX contributing around 80% to total reactive uptake, other oxidation products from isoprene photooxidation were estimated to contribute 20% of the total SOA formation. These findings highlight the importance for future models to consider the self-limiting effects of ISOPOOH/IEPOX and SOA formation through non-IEPOX pathways.more » « less
-
ABSTRACT: Isoprene has the highest atmospheric emissions of any nonmethane hydrocarbon, and isoprene epoxydiols (IEPOX) are well-established oxidation products and the primary contributors forming isoprene-derived secondary organic aerosol (SOA). Highly acidic particles (pH 0−3) widespread across the lower troposphere enable acid-driven multiphase chemistry of IEPOX, such as epoxide ring-opening reactions forming methyltetrol sulfates through nucleophilic attack of sulfate (SO4 2−). Herein, we systematically demonstrate an unexpected decrease in SOA formation from IEPOX on highly acidic particles (pH < 1). While IEPOX-SOA formation is commonly assumed to increase at low pH when more [H+] is available to protonate epoxides, we observe maximum SOA formation at pH 1 and less SOA formation at pH 0.0 and 0.4. This is attributed to limited availability of SO4 2− at pH values below the acid dissociation constant (pKa) of SO42− and bisulfate (HSO4−). The nucleophilicity of HSO4− is 100× lower than SO42−, decreasing SOA formation and shifting particulate products from low-volatility organosulfates to higher-volatility polyols. Current model parameterizations predicting SOA yields for IEPOX-SOA do not properly account for the SO42−/HSO4 − equilibrium, leading to overpredictions of SOA formation at low pH. Accounting for this underexplored acidity-dependent behavior is critical for accurately predicting SOA concentrations and resolving SOA impacts on air quality.more » « less