Abstract We construct localized beams in a non-Hermitian Glauber Fock (NGF) lattice of coupled waveguides and show that they can propagate over a long distance withalmost no diffraction. We specifically obtain the diffraction-free beams in a finite NGF lattice at the exceptional point (EP) by using the exact eigenstates of the semi-infinite unidirectional NGF lattice. We provide a numerical approach to finding other lattices that are capable of supporting non-diffracting beams at EPs.
more »
« less
Non-diffracting states at exceptional points
We propose to use exceptional points (EPs) to construct diffraction-free beam propagation and localized power oscillation in lattices. We specifically consider two systems to utilize EPs for diffraction-free beam propagation, one in synthetic gauge lattices and the other in unidirectionally coupled resonators where each resonator individually is capable of creating orbital angular momentum (OAM) beams. In the second system, we introduce the concept of robust and tunable OAM beam propagation in discrete lattices. We show that one can create robust OAM beams in an arbitrary number of sites of a photonic lattice. Furthermore, we report power oscillation at the EP of a non-Hermitian lattice. Our research widens the study and application of EPs in different photonic systems including OAM beams and their associated dynamics in discrete lattices.
more »
« less
- Award ID(s):
- 2012172
- PAR ID:
- 10212750
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 46
- Issue:
- 4
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 765
- Size(s):
- Article No. 765
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a novel technique for generating beams of light carrying orbital angular momentum (OAM) that increases mode purity and decreases singularity splitting by orders of magnitude. This technique also works to control and mitigate beam divergence within propagation distances less than the Rayleigh length. Additionally, we analyze a tunable parameter of this technique that can change the ratio of beam purity to power to fit desired specifications. Beam generation via this technique is achievable using only phase-modulating optical elements, which reduces experimental complexity and beam energy loss.more » « less
-
Abstract The orbital angular momentum (OAM) transformation of optical vortex is realized upon using aluminum metasurfaces with phase distributions derived from the caustic theory. The generated OAM transformation beam has the well-defined Bessel-like patterns with multiple designed topological charges from −1 to +2.5 including both the integer-order and fractional-order optical vortices along the propagation. The detailed OAM transformation process is observed in terms of the variations of both beam intensity and phase profiles. The dynamic distributions of OAM mode density in the transformation are further analyzed to illustrate the conservation of the total OAM. The demonstration of transforming OAM states arbitrarily for optical vortex beams will lead to many new applications in optical manipulation, quantum optics, and optical communication.more » « less
-
This paper presents Monolith, a high bitrate, low-power, metamaterials surface-based Orbital Angular Momentum (OAM) MIMO multiplexing design for rank deficient, free space wireless environments. Leveraging ambient signals as the source of power, Monolith backscatters these ambient signals by modulating them into several orthogonal beams, where each beam carries a unique OAM. We provide insights along the design aspects of a low-power and programmable metamaterials-based surface. Our results show that Monolith achieves an order of magnitude higher channel capacity than traditional spatial MIMO backscattering networks.more » « less
-
Abstract The spatial variation of vector vortex beams with arbitrary polarization states and orbital angular momentum (OAM) values along the beam propagation is demonstrated by using plasmonic metasurfaces with the initial geometric phase profiles determined from the caustic theory. The vector vortex beam is produced by the superposition of deflected right- and left-handed circularly polarized component vortices with different helical phase charges, which are simultaneously generated off-axially by the single metasurface. Besides, the detailed evolution processes of intensity profile, polarization distribution and OAM value along the beam propagation distance is analyzed. The demonstrated arbitrary space-variant vector vortex beam will pave the way to many promising applications related to spin-to-orbital angular momentum conversion, spin-orbit hybrid entanglement, particle manipulation and transportation, and optical communication.more » « less
An official website of the United States government
