skip to main content


Title: Non-diffracting states at exceptional points

We propose to use exceptional points (EPs) to construct diffraction-free beam propagation and localized power oscillation in lattices. We specifically consider two systems to utilize EPs for diffraction-free beam propagation, one in synthetic gauge lattices and the other in unidirectionally coupled resonators where each resonator individually is capable of creating orbital angular momentum (OAM) beams. In the second system, we introduce the concept of robust and tunable OAM beam propagation in discrete lattices. We show that one can create robust OAM beams in an arbitrary number of sites of a photonic lattice. Furthermore, we report power oscillation at the EP of a non-Hermitian lattice. Our research widens the study and application of EPs in different photonic systems including OAM beams and their associated dynamics in discrete lattices.

 
more » « less
Award ID(s):
2012172
NSF-PAR ID:
10212750
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
46
Issue:
4
ISSN:
0146-9592; OPLEDP
Page Range / eLocation ID:
Article No. 765
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We construct localized beams in a non-Hermitian Glauber Fock (NGF) lattice of coupled waveguides and show that they can propagate over a long distance withalmost no diffraction. We specifically obtain the diffraction-free beams in a finite NGF lattice at the exceptional point (EP) by using the exact eigenstates of the semi-infinite unidirectional NGF lattice. We provide a numerical approach to finding other lattices that are capable of supporting non-diffracting beams at EPs.

     
    more » « less
  2. In this paper, we experimentally demonstrate an approach that “hides” a low-intensity 50 Gbit/s quadrature-phase-keying (QPSK) free-space optical beam when it coaxially propagates on the same wavelength with an orthogonal high-intensity 50 Gbit/s QPSK optical beam. Our approach is to coaxially transmit the strong and weak beams carrying different orthogonal spatial modes within a modal basis set, e.g., orbital angular momentum (OAM) modes. Although the weak beam has much lower power than that of the strong beam, and the beams are in the same frequency band and on the same polarization, the two beams can still be effectively demultiplexed with little inherent crosstalk at the intended receiver due to their spatial orthogonality. However, an eavesdropper may not readily identify the weak beam when simply analyzing the spatial intensity profile. The correlation coefficient between the intensity profiles of the strong beam and the combined strong and weak beams is measured to characterize the potential for “hiding” a weak beam when measuring intensity profiles. Such a correlation coefficient is demonstrated to be higher than 0.997 when the power difference between the strong fundamental Gaussian beam and the weak OAM beam is∼<#comment/>8,∼<#comment/>10, and∼<#comment/>10dBfor the weak OAM−<#comment/>1,−<#comment/>2, and−<#comment/>3beams, respectively. Moreover, a 50 Gbit/s QPSK data link having itsQfactor above the 7% forward error correction limit is realized when the power of the weak OAM−<#comment/>3beam is 30 dB lower than that of the strong fundamental Gaussian beam.

     
    more » « less
  3. Artificial gauge fields enable the intriguing possibility to manipulate the propagation of light as if it were under the influence of a magnetic field even though photons possess no intrinsic electric charge. Typically, such fields are engineered via periodic modulations of photonic lattices such that the effective coupling coefficients after one period become complex-valued. In this work, we investigate the possibility of introducing randomness into artificial gauge fields by applying local random phase shifts in the modulation of lattices of optical waveguides. We first study the elemental unit consisting of two coupled single-mode waveguides and determine the effective complex-valued coupling coefficient after one period of modulation as a function of the phase shift, modulation amplitude, and modulation frequency. Thereby we identify the regime where varying the modulation phase yields sufficiently large changes of the effective coupling coefficient to induce Anderson localization. Using these results, we demonstrate numerically the onset of Anderson localization in 1D and 2D lattices ofx- and helically modulated waveguides via randomly choosing the modulation phases of individual waveguides. Besides further fundamental investigations of wave propagation in the presence of random gauge fields, our findings enable the engineering of coupling coefficients without changing the footprint of the overall lattice. As a proof of concept, we demonstrate how to engineer out-of-phase modulated lattices that exhibit dynamic localization and defect-free surface states. Therefore, we anticipate that the modulation phase will play an important role in the judicious design of functional waveguide lattices.

     
    more » « less
  4. A central question in free-space optical communications is how to improve the transfer of information between a transmitter and a receiver. The capacity of the communication channel can be increased by multiplexing of independent modes using either: (1) the multiple-input–multiple-output (MIMO) approach, where communication is done with modes obtained from the singular value decomposition of the transfer matrix from the transmitter array to the receiver array, or (2) the orbital angular momentum (OAM) approach, which uses vortex beams that carry angular momenta. In both cases, the number of usable modes is limited by the finite aperture of the transmitter and receiver, and the effect of the turbulent atmosphere. The goal of this paper is twofold: first, we show that the MIMO and OAM multiplexing schemes are closely related. Specifically, in the case of circular apertures, the leading singular vectors of the transfer matrix, which are useful for communication, are essentially the same as the commonly used Laguerre–Gauss vortex beams, provided these have a special radius that depends on the wavelength, the distance from the transmitter to the receiver, and the ratio of the radii of their apertures. Second, we characterize the effect of atmospheric turbulence on the communication modes using the phase screen method put in the mathematical framework of beam propagation in random media.

     
    more » « less
  5. We utilize aperture diversity combined with multiple-mode receivers and multiple-input-multiple-output (MIMO) digital signal processing (DSP) to demonstrate enhanced tolerance to atmospheric turbulence and spatial misalignment in a 10 Gbit/s quadrature-phase-shift-keyed (QPSK) free-space optical (FSO) link. Turbulence and misalignment could cause power coupling from the fundamental Gaussian mode into higher-order modes. Therefore, we detect power from multiple modes and use MIMO DSP to enhance the recovery of the original data. In our approach, (a) each of multiple transmitter apertures transmits a single fundamental Gaussian beam carrying the same data stream, (b) each of multiple receiver apertures detects the signals that are coupled from the fundamental Gaussian beams to multiple orbital angular momentum (OAM) modes, and (c) MIMO DSP is used to recover the data over multiple modes and receivers. Our simulation shows that the outage probability could be reduced from><#comment/>0.1to<<#comment/>0.01. Moreover, we experimentally demonstrate the scheme by transmitting two fundamental Gaussian beams carrying the same data stream and recovering the signals on OAM modes 0 and+1at each receiver aperture. We measure an up to∼<#comment/>10dBpower-penalty reduction for a bit error rate (BER) at the 7% forward error correction limit for a 10 Gbit/s QPSK signal.

     
    more » « less