skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells
The RNA binding protein TDP-43 forms intranuclear or cytoplasmic aggregates in age-related neurodegenerative diseases. In this study, we found that RNA binding–deficient TDP-43 (produced by neurodegeneration-causing mutations or posttranslational acetylation in its RNA recognition motifs) drove TDP-43 demixing into intranuclear liquid spherical shells with liquid cores. These droplets, which we named “anisosomes”, have shells that exhibit birefringence, thus indicating liquid crystal formation. Guided by mathematical modeling, we identified the primary components of the liquid core to be HSP70 family chaperones, whose adenosine triphosphate (ATP)–dependent activity maintained the liquidity of shells and cores. In vivo proteasome inhibition within neurons, to mimic aging-related reduction of proteasome activity, induced TDP-43–containing anisosomes. These structures converted to aggregates when ATP levels were reduced. Thus, acetylation, HSP70, and proteasome activities regulate TDP-43 phase separation and conversion into a gel or solid phase.  more » « less
Award ID(s):
1920374
PAR ID:
10212763
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
371
Issue:
6529
ISSN:
0036-8075
Page Range / eLocation ID:
Article No. eabb4309
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The RNA-binding protein TDP-43 forms intranuclear or cytoplasmic aggregates in age-related neurodegenerative diseases. Here we found that RNA-binding deficient TDP-43 (produced by neurodegeneration-causing mutations or post-translational acetylation in its RNA recognition motifs) drove TDP-43 de-mixing into intranuclear liquid spherical shells with liquid cores. We named these droplets anisosomes, whose shells exhibited birefringence, evidence of liquid crystal formation. Guided by mathematical modeling, we identified the major components of the liquid core to be HSP70 family chaperones, whose ATP-dependent activity maintained the liquidity of shells and cores. In vivo proteasome inhibition within neurons, to mimic aging-related reduction of proteasome activity, induced TDP-43-containing spherical shells. These structures converted into aggregates when ATP levels were reduced. Thus, acetylation, HSP70, and proteasome activities regulate TDP-43 phase separation and conversion into a gel/solid phase. 
    more » « less
  2. Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that affects neurons in the brain and spinal cord, causing loss of muscle control, and eventually leads to death. Phosphorylated transactive response DNA binding protein‐43 (TDP‐43) is the major pathological protein in both sporadic and familial ALS, forming cytoplasmic aggregates in over 95% of cases. Of the 10–15% of ALS cases that are familial, mutations in TDP‐43 represent about 5% of those with a family history. We have developed anin vitrooverexpression model by introducing three familial ALS mutations (A315T, M337V, and S379P) in the TDP‐43 (TARDBP) gene which we define as 3X‐TDP‐43. This overexpression model TDP‐43 shows deficits in autophagy flux and colocalization of TDP‐43 with stress granules. We also observe a progressive shift of TDP‐43 to the cytoplasm in this model. This overexpression model shows a reduction in solubility of phosphorylated TDP‐43 from RIPA to urea soluble. Four glycolytic enzymes, phosphoglycerate kinase one (PGK1), aldolase A (ALDOA), enolase 1 (ENO1), and pyruvate dehydrogenase kinase 1 (PDK1) show significant time‐dependent decreases in 3X‐TDP‐43 expressing cells. Shotgun proteomic analysis shows global changes in the importin subunit alpha‐1 (KPNA2), heat shock 70 kDa protein 1A (HSPA1A), and protein disulfide‐isomerase A3 (PDIA3) expression levels and coimmunoprecipitation reveals that these proteins complex with TDP‐43. Overall, these results suggest that the 3X‐TDP‐43 model may provide new insights into pathophysiology and an avenue for drug screeningin vitrofor those suffering from ALS and related TDP‐43 proteinopathies. 
    more » « less
  3. Self-perpetuating transmissible protein aggregates, termed prions, are implicated in mammalian diseases and control phenotypically detectable traits in Saccharomyces cerevisiae . Yeast stress-inducible chaperone proteins, including Hsp104 and Hsp70-Ssa that counteract cytotoxic protein aggregation, also control prion propagation. Stress-damaged proteins that are not disaggregated by chaperones are cleared from daughter cells via mother-specific asymmetric segregation in cell divisions following heat shock. Short-term mild heat stress destabilizes [ PSI + ], a prion isoform of the yeast translation termination factor Sup35 . This destabilization is linked to the induction of the Hsp104 chaperone. Here, we show that the region of Hsp104 known to be required for curing by artificially overproduced Hsp104 is also required for heat-shock-mediated [ PSI + ] destabilization. Moreover, deletion of the SIR2 gene, coding for a deacetylase crucial for asymmetric segregation of heat-damaged proteins, also counteracts heat-shock-mediated destabilization of [ PSI + ], and Sup35 aggregates are colocalized with aggregates of heat-damaged proteins marked by Hsp104 -GFP. These results support the role of asymmetric segregation in prion destabilization. Finally, we show that depletion of the heat-shock noninducible ribosome-associated chaperone Hsp70-Ssb decreases heat-shock-mediated destabilization of [ PSI + ], while disruption of a cochaperone complex mediating the binding of Hsp70-Ssb to the ribosome increases prion loss. Our data indicate that Hsp70-Ssb relocates from the ribosome to the cytosol during heat stress. Cytosolic Hsp70-Ssb has been shown to antagonize the function of Hsp70-Ssa in prion propagation, which explains the Hsp70-Ssb effect on prion destabilization by heat shock. This result uncovers the stress-related role of a stress noninducible chaperone. 
    more » « less
  4. Walters, Kylie J. (Ed.)
    Transactive response DNA-binding Protein of 43 kDa (TDP-43) assembles various aggregate forms, including biomolecular condensates or functional and pathological amyloids, with roles in disparate scenarios (e.g., muscle regeneration versus neurodegeneration). The link between condensates and fibrils remains unclear, just as the factors controlling conformational transitions within these aggregate species: Salt- or RNA-induced droplets may evolve into fibrils or remain in the droplet form, suggesting distinct end point species of different aggregation pathways. Using microscopy and NMR methods, we unexpectedly observed in vitro droplet formation in the absence of salts or RNAs and provided visual evidence for fibrillization at the droplet surface/solvent interface but not the droplet interior. Our NMR analyses unambiguously uncovered a distinct amyloid conformation in which Phe-Gly motifs are key elements of the reconstituted fibril form, suggesting a pivotal role for these residues in creating the fibril core. This contrasts the minor participation of Phe-Gly motifs in initiation of the droplet form. Our results point to an intrinsic (i.e., non-induced) aggregation pathway that may exist over a broad range of conditions and illustrate structural features that distinguishes between aggregate forms. 
    more » « less
  5. Chernoff, Yury O (Ed.)
    Molecular chaperones play a central role in protein disaggregation. However, the molecular determinants that regulate this process are poorly understood. Hsp104 is an AAA+ ATPase that disassembles stress granules and amyloids in yeast through collaboration with Hsp70 and Hsp40.In vitrostudies show that Hsp104 processes different types of protein aggregates by partially translocating or threading polypeptides through the central pore of the hexamer. However, it is unclear how Hsp104 processing influences client protein functionin vivo. The middle domain (MD) of Hsp104 regulates ATPase activity and interactions with Hsp70. Here, we tested how MD variants, Hsp104A503Sand Hsp104A503V, process different protein aggregates. We establish that engineered MD variants fail to resolve stress granules but retain prion fragmentation activity required for prion propagation. Using the Sup35 prion protein, ourin vitroandin vivodata indicate that the MD variants can disassemble Sup35 aggregates, but the disaggregated protein has reduced GTPase and translation termination activity. These results suggest that the middle domain can play a role in sensing certain substrates and plays an essential role in ensuring the processed protein is functional. 
    more » « less