skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparing Realistic Particle Simulation Using Discrete Element Method and Physics Engine
Discrete element method (DEM) has been widely applied to simulate granular soil behavior. However, traditional DEM uses sphere clusters to approximate realistic particles, which is computationally demanding when simulating many particles. This study explores the use of physics engine, a platform developed for simulating physical processes in video games, to simulate realistic particles. This paper compares realistic particle simulation methodologies using physics engine and discrete element method, including contact models, parameter settings, computational speeds, and simulation results. The results show that the physics engine and DEM achieve similar simulation outputs, while the physics engine runs significantly faster than DEM, because PhysX uses both CPUs (central processing units) and GPUs (graphics processing units) of computers, triangular face tessellations to represent realistic particles, and a simplified contact model to accelerate simulations. This study provides geo-mechanicians and DEM modelers with one more option for them to consider when they simulate realistic particles.  more » « less
Award ID(s):
1917332
PAR ID:
10213184
Author(s) / Creator(s):
; ;
Editor(s):
Hambleton, J. P.
Date Published:
Journal Name:
Geo-Congress 2020
Page Range / eLocation ID:
464 to 472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The discrete element method (DEM) is the most widely applied numerical tool to simulate triaxial test, a common geotechnical test to measure the shear strength of soil. However, the typical DEM model uses sphere clusters to approximate soil particles, which is not sufficiently accurate to simulate realistic soil particles. This paper shows the potential of using a physics engine technique as a promising alternative to typical DEM method. Originally developed for simulating realistic physical and mechanical processes in video games and computer-animated films, physics engines have developed quickly and are being applied in scientific computing. Physics engines use triangular face tesselations to represent realistic objectives, which provides higher accuracy to model realistic soil particle geometries. In this paper, physics engine is applied to simulate true triaxial tests ofMonterey No. 0 sand. The numerical results agree well with experimental results. This study provides DEM modelers with the physics engine technique as another promising option to simulate realistic soil particles in geotechnical tests. 
    more » « less
  2. We report on an open-source, publicly available C++ software module called Chrono::GPU, which uses the Discrete Element Method (DEM) to simulate large granular systems on Graphics Processing Unit (GPU) cards. The solver supports the integration of granular material with geometries defined by triangle meshes, as well as co-simulation with the multi-physics simulation engine Chrono. Chrono::GPU adopts a smooth contact formulation and implements various common contact force models, such as the Hertzian model for normal force and the Mindlin friction force model, which takes into account the history of tangential displacement, rolling frictional torques, and cohesion. We report on the code structure and highlight its use of mixed data types for reducing the memory footprint and increasing simulation speed. We discuss several validation tests (wave propagation, rotating drum, direct shear test, crater test) that compare the simulation results against experimental data or results reported in the literature. In another benchmark test, we demonstrate linear scaling with a problem size up to the GPU memory capacity; specifically, for systems with 130 million DEM elements. The simulation infrastructure is demonstrated in conjunction with simulations of the NASA Curiosity rover, which is currently active on Mars. 
    more » « less
  3. The addition of short carbon fibers to the feedstock of large-scale polymer extrusion/deposition additive manufacturing results in significant increases in mechanical properties dependent on the fiber distribution and orientation in the beads. In order to analyze those factors, a coupled computational fluid dynamics (CFD) and discrete element modeling (DEM) approach is developed to simulate the behavior of fibers in an extrusion/deposition nozzle flow after calibrations in simple shear flows. The DEM model uses bonded discrete particles to make up flexible and breakable fibers that are first calibrated to match Jeffery’s orbit and to produce interactions that are consistent with Advani-Tucker orientation tensor predictions. The DEM/CFD model is then used to simulate the processing of fiber suspensions in the variable flow and geometries present in extrusion/deposition nozzles. The computed results provide enhanced insight into the evolution of fiber orientation and distribution during extrusion/deposition as compared to existing models through individual fiber tracking over time and space on multiple parameters of interest such as orientation, flexure, and contact forces. 
    more » « less
  4. In binder jet additive manufacturing (BJAM), uniformity and density of the powder layer impact green part quality. This study investigates the printability of unrefined sand using counter-roller spreading. Altair EDEM, a high-performance software powered by the Discrete Element Method (DEM), was used to simulate the BJAM process to evaluate powder bed homogeneity and density under various operating conditions, including roller rotational speed, traverse speed, powder layer thickness, and roller diameter. Utilizing high-performance computing (HPC) and graphics processing unit (GPU) clusters, time-efficient, and more realistic, simulations were performed simulating 300,000 grains. Detailed DEM simulations were executed by reconstructing representative particle shapes using two-dimensional images obtained using particle characterization equipment. The results highlight roller velocity and powder layer thickness as key determinants of sand spreadability. Optimal powder bed density (PBD) was achieved at a roller velocity of 20 mm/s with minimal deviation. A layer thickness exceeding 200 micrometers was found to prevent jamming and void formation, while percolation led to size segregation. The findings indicate that producing uniform and dense layers of unrefined sand is feasible but may incur trade-offs in print resolution and increased printing times. This work contributes to the advancement of sustainable and/or remote BJAM technologies, ensuring progress in both environmental sustainability and accessibility. 
    more » « less
  5. Internal soil erosion caused by water infiltration around defective buried pipes poses a significant threat to the long-term stability of underground infrastructures such as pipelines and highway culverts. This study employs a coupled computational fluid dynamics–discrete element method (CFD–DEM) framework to simulate the detachment, transport, and redistribution of soil particles under varying infiltration pressures and pipe defect geometries. Using ANSYS Fluent (CFD) and Rocky (DEM), the simulation resolves both the fluid flow field and granular particle dynamics, capturing erosion cavity formation, void evolution, and soil particle transport in three dimensions. The results reveal that increased infiltration pressure and defect size in the buried pipe significantly accelerate the process of erosion and sinkhole formation, leading to potentially unstable subsurface conditions. Visualization of particle migration, sinkhole development, and soil velocity distributions provides insight into the mechanisms driving localized failure. The findings highlight the importance of considering fluid–particle interactions and defect characteristics in the design and maintenance of buried structures, offering a predictive basis for assessing erosion risk and infrastructure vulnerability. 
    more » « less