skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Swimming and defence: competing needs across ontogeny in armoured fishes (Agonidae)
Biological armours are potent model systems for understanding the complex series of competing demands on protective exoskeletons; after all, armoured organisms are the product of millions of years of refined engineering under the harshest conditions. Fishes are no strangers to armour, with various types of armour plating common to the 400–500 Myr of evolution in both jawed and jawless fishes. Here, we focus on the poachers (Agonidae), a family of armoured fishes native to temperate waters of the Pacific rim. We examined armour morphology, body stiffness and swimming performance in the northern spearnose poacher ( Agonopsis vulsa ) over ontogeny. As juveniles, these fishes make frequent nocturnal forays into the water column in search of food, while heavily armoured adults are bound to the benthos. Most armour dimensions and density increase with body length, as does body stiffness. Juvenile poachers have enlarged spines on their armour whereas adults invest more mineral in armour plate bases. Adults are stiffer and accelerate faster than juveniles with an anguilliform swimming mode. Subadults more closely approximate adults more than smaller juveniles, with regards to both swimming and armour mechanics. Poacher armour serves multiple functions over ontogeny, from facilitating locomotion, slowing sinking and providing defence.  more » « less
Award ID(s):
1759637 1701665 1852096
PAR ID:
10213205
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of The Royal Society Interface
Volume:
17
Issue:
169
ISSN:
1742-5689
Page Range / eLocation ID:
20200301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The elongate body plan is present in many groups of fishes, and this morphology dictates functional consequences seen in swimming behavior. Previous work has shown that increasing the number of vertebrae, or decreasing the intervertebral joint length, in a fixed length artificial system increases stiffness. Tails with increased stiffness can generate more power from tail beats, resulting in an increased mean swimming speed. This demonstrates the impacts of morphology on both material properties and kinematics, establishing mechanisms for form contributing to function. Here, we wanted to investigate relationships between form and ecological function, such as differences in dietary strategies and habitat preferences among fish species. This study aims to characterize and compare the kinematics, material properties, and vertebral morphology of four species of elongate fishes: Anoplarchus insignis, Anoplarchus purpurescens, Xiphister atropurpureus, and Xiphister mucosus. We hypothesized that these properties would differ among the four species due to their differential ecological niches. To calculate kinematic variables, we filmed these fishes swimming volitionally. We also measured body stiffness by bending the abdominal and tail regions of sacrificed individuals in different stages of dissection (whole body, removed skin, removed muscle). Finally, we counted the number of vertebrae from CT scans of each species to quantify vertebral morphology. Principal component and linear discriminant analyses suggested that the elongate fish species can be distinguished from one another by their material properties, morphology, and swimming kinematics. With this information combined, we can draw connections between the physical properties of the fishes and their ecological niches. 
    more » « less
  2. Fishes exhibit an astounding diversity of locomotor behaviors from classic swimming with their body and fins to jumping, flying, walking, and burrowing. Fishes that use their body and caudal fin (BCF) during undulatory swimming have been traditionally divided into modes based on the length of the propulsive body wave and the ratio of head:tail oscillation amplitude: anguilliform, subcarangiform, carangiform, and thunniform. This classification was first proposed based on key morphological traits, such as body stiffness and elongation, to group fishes based on their expected swimming mechanics. Here, we present a comparative study of 44 diverse species quantifying the kinematics and morphology of BCF-swimming fishes. Our results reveal that most species we studied share similar oscillation amplitude during steady locomotion that can be modeled using a second-degree order polynomial. The length of the propulsive body wave was shorter for species classified as anguilliform and longer for those classified as thunniform, although substantial variability existed both within and among species. Moreover, there was no decrease in head:tail amplitude from the anguilliform to thunniform mode of locomotion as we expected from the traditional classification. While the expected swimming modes correlated with morphological traits, they did not accurately represent the kinematics of BCF locomotion. These results indicate that even fish species differing as substantially in morphology as tuna and eel exhibit statistically similar two-dimensional midline kinematics and point toward unifying locomotor hydrodynamic mechanisms that can serve as the basis for understanding aquatic locomotion and controlling biomimetic aquatic robots. 
    more » « less
  3. Abstract The epaulette shark, Hemiscyllium ocellatum, is a small, reef-dwelling, benthic shark that—using its paired fins—can walk, both in and out of water. Within the reef flats, this species experiences short periods of elevated CO2 and hypoxia as well as fluctuating temperatures as reef flats become isolated with the outgoing tide. Past studies have shown that this species is robust (i.e., respiratory and metabolic performance, behavior) to climate change-relevant elevated CO2 levels as well as hypoxia and anoxia tolerant. However, epaulette shark embryos reared under ocean warming conditions hatch earlier and smaller, with altered patterns and coloration, and with higher metabolic costs than their current-day counterparts. Findings to date suggest that this species has adaptations to tolerate some, but perhaps not all, of the challenging conditions predicted for the 21st century. As such, the epaulette shark is emerging as a model system to understand vertebrate physiology in changing oceans. Yet, few studies have investigated the kinematics of walking and swimming, which may be vital to their biological fitness, considering their habitat and propensity for challenging environmental conditions. Given that neonates retain embryonic nutrition via an internalized yolk sac, resulting in a bulbous abdomen, while juveniles actively forage for worms, crustaceans, and small fishes, we hypothesized that difference in body shape over early ontogeny would affect locomotor performance. To test this, we examined neonate and juvenile locomotor kinematics during the three aquatic gaits they utilize—slow-to-medium walking, fast walking, and swimming—using 13 anatomical landmarks along the fins, girdles, and body midline. We found that differences in body shape did not alter kinematics between neonates and juveniles. Overall velocity, fin rotation, axial bending, and tail beat frequency and amplitude were consistent between early life stages. Data suggest that the locomotor kinematics are maintained between neonate and juvenile epaulette sharks, even as their feeding strategy changes. Studying epaulette shark locomotion allows us to understand this—and perhaps related—species’ ability to move within and away from challenging conditions in their habitats. Such locomotor traits may not only be key to survival, in general, as a small, benthic mesopredator (i.e., movements required to maneuver into small reef crevices to avoid aerial and aquatic predators), but also be related to their sustained physiological performance under challenging environmental conditions, including those associated with climate change—a topic worthy of future investigation. 
    more » « less
  4. The anterior body of many fishes is shaped like an airfoil turned on its side. With an oscillating angle to the swimming direction, such an airfoil experiences negative pressure due to both its shape and pitching movements. This negative pressure acts as thrust forces on the anterior body. Here, we apply a high-resolution, pressure-based approach to describe how two fishes, bluegill sunfish (Lepomis macrochirusRafinesque) and brook trout (Salvelinus fontinalisMitchill), swimming in the carangiform mode, the most common fish swimming mode, generate thrust on their anterior bodies using leading-edge suction mechanics, much like an airfoil. These mechanics contrast with those previously reported in lampreys—anguilliform swimmers—which produce thrust with negative pressure but do so through undulatory mechanics. The thrust produced on the anterior bodies of these carangiform swimmers through negative pressure comprises 28% of the total thrust produced over the body and caudal fin, substantially decreasing the net drag on the anterior body. On the posterior region, subtle differences in body shape and kinematics allow trout to produce more thrust than bluegill, suggesting that they may swim more effectively. Despite the large phylogenetic distance between these species, and differences near the tail, the pressure profiles around the anterior body are similar. We suggest that such airfoil-like mechanics are highly efficient, because they require very little movement and therefore relatively little active muscular energy, and may be used by a wide range of fishes since many species have appropriately shaped bodies. 
    more » « less
  5. Abstract Fishes have repeatedly evolved characteristic body shapes depending on how close they live to the substrate. Pelagic fishes live in open water and typically have narrow, streamlined body shapes; benthic and demersal fishes live close to the substrate; and demersal fishes often have deeper bodies. These shape differences are often associated with behavioral differences: pelagic fishes swim nearly constantly, demersal fishes tend to maneuver near the substrate, and benthic fishes often lie in wait on the substrate. We hypothesized that these morphological and behavioral differences would be reflected in the mechanical properties of the body, and specifically in vertebral column stiffness, because it is an attachment point for the locomotor musculature and a central axis for body bending. The vertebrae of bony fishes are composed of two cones connected by a foramen, which is filled by the notochord. Since the notochord is more flexible than bony vertebral centra, we predicted that pelagic fishes would have narrower foramina or shallower cones, leading to less notochordal material and a stiffer vertebral column which might support continuous swimming. In contrast, we predicted that benthic and demersal fishes would have more notochordal material, making the vertebral column more flexible for diverse behaviors in these species. We therefore examined vertebral morphology in 79 species using micro‐computed tomography scans. Six vertebral features were measured including notochordal foramen diameter, centrum body length, and the cone angles and diameters for the anterior and posterior vertebral cones, along with body fineness. Using phylogenetic generalized least squares analyses, we found that benthic and pelagic species differed significantly, with larger foramina, shorter centra, and larger cones in benthic species. Thus, morphological differences in the internal shape of the vertebrae of fishes are consistent with a stiffer vertebral column in pelagic fishes and with a more flexible vertebral column in benthic species. 
    more » « less