skip to main content


Title: Population genomic analyses confirm male-biased mutation rates in snakes
Abstract Male-biased mutation rates occur in a diverse array of organisms. The ratio of male-to-female mutation rate may have major ramifications for evolution across the genome, and for sex-linked genes in particular. In ZW species, the Z chromosome is carried by males two-thirds of the time, leading to the prediction that male-biased mutation rates will have a disproportionate effect on the evolution of Z-linked genes relative to autosomes and the W chromosome. Colubroid snakes (including colubrids, elapids, and viperids) have ZW sex determination, yet male-biased mutation rates have not been well studied in this group. Here we analyze a population genomic dataset from rattlesnakes to quantify genetic variation within and genetic divergence between species. We use a new method for unbiased estimation of population genetic summary statistics to compare variation between the Z chromosome and autosomes and to calculate net nucleotide differentiation between species. We find evidence for a 2.03-fold greater mutation rate in male rattlesnakes relative to females, corresponding to an average μZ/μA ratio of 1.1. Our results from snakes are quantitatively similar to birds, suggesting that male-biased mutation rates may be a common feature across vertebrate lineages with ZW sex determination.  more » « less
Award ID(s):
1906188 1655571
NSF-PAR ID:
10213332
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Heredity
ISSN:
0022-1503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Schaack, Sarah (Ed.)
    Abstract Sex chromosomes diverge after the establishment of recombination suppression, resulting in differential sex-linkage of genes involved in genetic sex determination and dimorphic traits. This process produces systems of male or female heterogamety wherein the Y and W chromosomes are only present in one sex and are often highly degenerated. Sex-limited Y and W chromosomes contain valuable information about the evolutionary transition from autosomes to sex chromosomes, yet detailed characterizations of the structure, composition, and gene content of sex-limited chromosomes are lacking for many species. In this study, we characterize the female-specific W chromosome of the prairie rattlesnake (Crotalus viridis) and evaluate how recombination suppression and other processes have shaped sex chromosome evolution in ZW snakes. Our analyses indicate that the rattlesnake W chromosome is over 80% repetitive and that an abundance of GC-rich mdg4 elements has driven an overall high degree of GC-richness despite a lack of recombination. The W chromosome is also highly enriched for repeat sequences derived from endogenous retroviruses and likely acts as a “refugium” for these and other retroelements. We annotated 219 putatively functional W-linked genes across at least two evolutionary strata identified based on estimates of sequence divergence between Z and W gametologs. The youngest of these strata is relatively gene-rich, however gene expression across strata suggests retained gene function amidst a greater degree of degeneration following ancient recombination suppression. Functional annotation of W-linked genes indicates a specialization of the W chromosome for reproductive and developmental function since recombination suppression from the Z chromosome. 
    more » « less
  2. Abstract

    DNA mismatch repair (MMR), an evolutionarily conserved repair pathway shared by prokaryotic and eukaryotic species alike, influences molecular evolution by detecting and correcting mismatches, thereby protecting genetic fidelity, reducing the mutational load, and preventing lethality. Herein we conduct the first genome-wide evaluation of the alterations to the mutation rate and spectrum under impaired activity of the MutSα homolog, msh-2, in Caenorhabditis elegans male–female fog-2(lf) lines. We performed mutation accumulation (MA) under RNAi-induced knockdown of msh-2 for up to 50 generations, followed by next-generation sequencing of 19 MA lines and the ancestral control. msh-2 impairment in the male–female background substantially increased the frequency of nuclear base substitutions (∼23×) and small indels (∼328×) relative to wildtype hermaphrodites. However, we observed no increase in the mutation rates of mtDNA, and copy-number changes of single-copy genes. There was a marked increase in copy-number variation of rDNA genes under MMR impairment. In C. elegans, msh-2 repairs transitions more efficiently than transversions and increases the AT mutational bias relative to wildtype. The local sequence context, including sequence complexity, G + C-content, and flanking bases influenced the mutation rate. The X chromosome exhibited lower substitution and higher indel rates than autosomes, which can either result from sex-specific mutation rates or a nonrandom distribution of mutable sites between chromosomes. Provided the observed difference in mutational pattern is mostly due to MMR impairment, our results indicate that the specificity of MMR varies between taxa, and is more efficient in detecting and repairing small indels in eukaryotes relative to prokaryotes.

     
    more » « less
  3. null (Ed.)
    The rate of divergence for Z or X chromosomes is usually observed to be greater than autosomes, but the proposed evolutionary causes for this pattern vary, as do empirical results from diverse taxa. Even among moths and butterflies (Lepidoptera), which generally share a single-origin Z chromosome, the handful of available studies give mixed support for faster or more adaptive evolution of the Z chromosome, depending on the species assayed. Here, we examine the molecular evolution of Z chromosomes in two additional lepidopteran species: the Carolina sphinx moth and the monarch butterfly, the latter of which possesses a recent chromosomal fusion yielding a segment of newly Z-linked DNA. We find evidence for both faster and more adaptive Z chromosome evolution in both species, though this effect is strongest in the neo-Z portion of the monarch sex chromosome. The neo-Z is less male-biased than expected of a Z chromosome, and unbiased and female-biased genes drive the signal for adaptive evolution here. Together these results suggest that male-biased gene accumulation and haploid selection have opposing effects on long-term rates of adaptation and may help explain the discrepancies in previous findings as well as the repeated evolution of neo-sex chromosomes in Lepidoptera. 
    more » « less
  4. Abstract

    Sex chromosomes play an outsized role in adaptation and speciation, and thus deserve particular attention in evolutionary genomics. In particular, fusions between sex chromosomes and autosomes can produce neo‐sex chromosomes, which offer important insights into the evolutionary dynamics of sex chromosomes. Here, we investigate the evolutionary origin of the previously reportedDanausneo‐sex chromosome within the tribe Danaini. We assembled and annotated genomes ofTirumala septentrionis(subtribe Danaina),Ideopsis similis(Amaurina),Idea leuconoe(Euploeina) andLycorea halia(Itunina) and identified their Z‐linked scaffolds. We found that theDanausneo‐sex chromosome resulting from the fusion between a Z chromosome and an autosome corresponding to theMelitaea cinxiachromosome (McChr) 21 arose in a common ancestor of Danaina, Amaurina and Euploina. We also identified two additional fusions as the W chromosome further fused with the synteny block McChr31 inI. similisand independent fusion occurred between ancestral Z chromosome and McChr12 inL. halia. We further tested a possible role of sexually antagonistic selection in sex chromosome turnover by analysing the genomic distribution of sex‐biased genes inI. leuconoeandL. halia. The autosomes corresponding to McChr21 and McChr31 involved in the fusions are significantly enriched in female‐ and male‐biased genes, respectively, which could have hypothetically facilitated fixation of the neo‐sex chromosomes. This suggests a role of sexual antagonism in sex chromosome turnover in Lepidoptera. The neo‐Z chromosomes of bothI. leuconoeandL. haliaappear fully compensated in somatic tissues, but the extent of dosage compensation for the ancestral Z varies across tissues and species.

     
    more » « less
  5. In human populations, the relative levels of neutral diversity on the X and autosomes differ markedly from each other and from the naïve theoretical expectation of 3/4. Here we propose an explanation for these differences based on new theory about the effects of sex-specific life history and given pedigree-based estimates of the dependence of human mutation rates on sex and age. We demonstrate that life history effects, particularly longer generation times in males than in females, are expected to have had multiple effects on human X-to-autosome (X:A) diversity ratios, as a result of male-biased mutation rates, the equilibrium X:A ratio of effective population sizes, and the differential responses to changes in population size. We also show that the standard approach of using divergence between species to correct for male mutation bias results in biased estimates of X:A effective population size ratios. We obtain alternative estimates using pedigree-based estimates of the male mutation bias, which reveal that X:A ratios of effective population sizes are considerably greater than previously appreciated. Finally, we find that the joint effects of historical changes in life history and population size can explain the observed X:A diversity ratios in extant human populations. Our results suggest that ancestral human populations were highly polygynous, that non-African populations experienced a substantial reduction in polygyny and/or increase in the male-to-female ratio of generation times around the Out-of-Africa bottleneck, and that current diversity levels were affected by fairly recent changes in sex-specific life history.

     
    more » « less