skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Population genomic analyses confirm male-biased mutation rates in snakes
Abstract Male-biased mutation rates occur in a diverse array of organisms. The ratio of male-to-female mutation rate may have major ramifications for evolution across the genome, and for sex-linked genes in particular. In ZW species, the Z chromosome is carried by males two-thirds of the time, leading to the prediction that male-biased mutation rates will have a disproportionate effect on the evolution of Z-linked genes relative to autosomes and the W chromosome. Colubroid snakes (including colubrids, elapids, and viperids) have ZW sex determination, yet male-biased mutation rates have not been well studied in this group. Here we analyze a population genomic dataset from rattlesnakes to quantify genetic variation within and genetic divergence between species. We use a new method for unbiased estimation of population genetic summary statistics to compare variation between the Z chromosome and autosomes and to calculate net nucleotide differentiation between species. We find evidence for a 2.03-fold greater mutation rate in male rattlesnakes relative to females, corresponding to an average μZ/μA ratio of 1.1. Our results from snakes are quantitatively similar to birds, suggesting that male-biased mutation rates may be a common feature across vertebrate lineages with ZW sex determination.  more » « less
Award ID(s):
1906188 1655571
PAR ID:
10213332
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Heredity
ISSN:
0022-1503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Schaack, Sarah (Ed.)
    Abstract Sex chromosomes diverge after the establishment of recombination suppression, resulting in differential sex-linkage of genes involved in genetic sex determination and dimorphic traits. This process produces systems of male or female heterogamety wherein the Y and W chromosomes are only present in one sex and are often highly degenerated. Sex-limited Y and W chromosomes contain valuable information about the evolutionary transition from autosomes to sex chromosomes, yet detailed characterizations of the structure, composition, and gene content of sex-limited chromosomes are lacking for many species. In this study, we characterize the female-specific W chromosome of the prairie rattlesnake (Crotalus viridis) and evaluate how recombination suppression and other processes have shaped sex chromosome evolution in ZW snakes. Our analyses indicate that the rattlesnake W chromosome is over 80% repetitive and that an abundance of GC-rich mdg4 elements has driven an overall high degree of GC-richness despite a lack of recombination. The W chromosome is also highly enriched for repeat sequences derived from endogenous retroviruses and likely acts as a “refugium” for these and other retroelements. We annotated 219 putatively functional W-linked genes across at least two evolutionary strata identified based on estimates of sequence divergence between Z and W gametologs. The youngest of these strata is relatively gene-rich, however gene expression across strata suggests retained gene function amidst a greater degree of degeneration following ancient recombination suppression. Functional annotation of W-linked genes indicates a specialization of the W chromosome for reproductive and developmental function since recombination suppression from the Z chromosome. 
    more » « less
  2. null (Ed.)
    The rate of divergence for Z or X chromosomes is usually observed to be greater than autosomes, but the proposed evolutionary causes for this pattern vary, as do empirical results from diverse taxa. Even among moths and butterflies (Lepidoptera), which generally share a single-origin Z chromosome, the handful of available studies give mixed support for faster or more adaptive evolution of the Z chromosome, depending on the species assayed. Here, we examine the molecular evolution of Z chromosomes in two additional lepidopteran species: the Carolina sphinx moth and the monarch butterfly, the latter of which possesses a recent chromosomal fusion yielding a segment of newly Z-linked DNA. We find evidence for both faster and more adaptive Z chromosome evolution in both species, though this effect is strongest in the neo-Z portion of the monarch sex chromosome. The neo-Z is less male-biased than expected of a Z chromosome, and unbiased and female-biased genes drive the signal for adaptive evolution here. Together these results suggest that male-biased gene accumulation and haploid selection have opposing effects on long-term rates of adaptation and may help explain the discrepancies in previous findings as well as the repeated evolution of neo-sex chromosomes in Lepidoptera. 
    more » « less
  3. Abstract Sex chromosomes play an outsized role in adaptation and speciation, and thus deserve particular attention in evolutionary genomics. In particular, fusions between sex chromosomes and autosomes can produce neo‐sex chromosomes, which offer important insights into the evolutionary dynamics of sex chromosomes. Here, we investigate the evolutionary origin of the previously reportedDanausneo‐sex chromosome within the tribe Danaini. We assembled and annotated genomes ofTirumala septentrionis(subtribe Danaina),Ideopsis similis(Amaurina),Idea leuconoe(Euploeina) andLycorea halia(Itunina) and identified their Z‐linked scaffolds. We found that theDanausneo‐sex chromosome resulting from the fusion between a Z chromosome and an autosome corresponding to theMelitaea cinxiachromosome (McChr) 21 arose in a common ancestor of Danaina, Amaurina and Euploina. We also identified two additional fusions as the W chromosome further fused with the synteny block McChr31 inI. similisand independent fusion occurred between ancestral Z chromosome and McChr12 inL. halia. We further tested a possible role of sexually antagonistic selection in sex chromosome turnover by analysing the genomic distribution of sex‐biased genes inI. leuconoeandL. halia. The autosomes corresponding to McChr21 and McChr31 involved in the fusions are significantly enriched in female‐ and male‐biased genes, respectively, which could have hypothetically facilitated fixation of the neo‐sex chromosomes. This suggests a role of sexual antagonism in sex chromosome turnover in Lepidoptera. The neo‐Z chromosomes of bothI. leuconoeandL. haliaappear fully compensated in somatic tissues, but the extent of dosage compensation for the ancestral Z varies across tissues and species. 
    more » « less
  4. Sex-related differences in mortality are widespread in the animal kingdom. Although studies have shown that sex determination systems might drive lifespan evolution, sex chromosome influence on aging rates have not been investigated so far, likely due to an apparent lack of demographic data from clades including both XY (with heterogametic males) and ZW (heterogametic females) systems. Taking advantage of a unique collection of capture–recapture datasets in amphibians, a vertebrate group where XY and ZW systems have repeatedly evolved over the past 200 million years, we examined whether sex heterogamy can predict sex differences in aging rates and lifespans. We showed that the strength and direction of sex differences in aging rates (and not lifespan) differ between XY and ZW systems. Sex-specific variation in aging rates was moderate within each system, but aging rates tended to be consistently higher in the heterogametic sex. This led to small but detectable effects of sex chromosome system on sex differences in aging rates in our models. Although preliminary, our results suggest that exposed recessive deleterious mutations on the X/Z chromosome (the “unguarded X/Z effect”) or repeat-rich Y/W chromosome (the “toxic Y/W effect”) could accelerate aging in the heterogametic sex in some vertebrate clades. 
    more » « less
  5. Frogs are ideal organisms for studying sex chromosome evolution because of their diversity in sex chromosome differentiation and sex-determination systems. We review 222 anuran frogs, spanning ~220 Myr of divergence, with characterized sex chromosomes, and discuss their evolution, phylogenetic distribution and transitions between homomorphic and heteromorphic states, as well as between sex-determination systems. Most (~75%) anurans have homomorphic sex chromosomes, with XY systems being three times more common than ZW systems. Most remaining anurans (~25%) have heteromorphic sex chromosomes, with XY and ZW systems almost equally represented. There are Y-autosome fusions in 11 species, and no W-/Z-/X-autosome fusions are known. The phylogeny represents at least 19 transitions between sex-determination systems and at least 16 cases of independent evolution of heteromorphic sex chromosomes from homomorphy, the likely ancestral state. Five lineages mostly have heteromorphic sex chromosomes, which might have evolved due to demographic and sexual selection attributes of those lineages. Males do not recombine over most of their genome, regardless of which is the heterogametic sex. Nevertheless, telomere-restricted recombination between ZW chromosomes has evolved at least once. More comparative genomic studies are needed to understand the evolutionary trajectories of sex chromosomes among frog lineages, especially in the ZW systems. 
    more » « less