skip to main content


Title: Enhanced radiative and thermal properties from surface encapsulation of InAs nanowires

In this work, photoluminescence (PL), quantum efficiency and carrier dynamics are investigated in indium arsenide (InAs) nanowires (NWs) with various surface treatments, including a molecular beam epitaxy (MBE)-grown semiconductor shell passivation, sulfur-passivation, alumina (Al2O3) coating by atomic layer deposition (ALD) and polydimethylsiloxane (PDMS) spin-coating. The ALD-dielectric layer-coated InAs core-shell NWs show a maximum 13-fold increase in PL intensity. In contrast to the previous reports, this enhancement is found to be due to increased radiative rate from an enhanced Purcell factor, better thermal conductance and higher carrier injection within the NWs instead of improved surface quality. Numeric simulations confirm the experimentally observed increased radiative rate. Further improvements are suggested with even thicker capped InAs NWs. Carrier lifetime in surface-treated NWs is extended and shows long-term stability, critical for practical devices.

 
more » « less
NSF-PAR ID:
10213361
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optical Materials Express
Volume:
11
Issue:
3
ISSN:
2159-3930
Page Range / eLocation ID:
Article No. 719
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This work evaluates the passivation efficacy of thermal atomic layer deposited (ALD) Al 2 O 3 dielectric layer on self-catalyzed GaAs 1- x Sb x nanowires (NWs) grown using molecular beam epitaxy. A detailed assessment of surface chemical composition and optical properties of Al 2 O 3 passivated NWs with and without prior sulfur treatment were studied and compared to as-grown samples using x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and low-temperature photoluminescence (PL) spectroscopy. The XPS measurements reveal that prior sulfur treatment followed by Al 2 O 3 ALD deposition abates III–V native oxides from the NW surface. However, the degradation in 4K-PL intensity by an order of magnitude observed for NWs with Al 2 O 3 shell layer compared to the as-grown NWs, irrespective of prior sulfur treatment, suggests the formation of defect states at the NW/dielectric interface contributing to non-radiative recombination centers. This is corroborated by the Raman spectral broadening of LO and TO Raman modes, increased background scattering, and redshift observed for Al 2 O 3 deposited NWs relative to the as-grown. Thus, our work seems to indicate the unsuitability of ALD deposited Al 2 O 3 as a passivation layer for GaAsSb NWs. 
    more » « less
  2. Abstract

    Zinc oxide (ZnO) nanowires are widely studied for use in ultraviolet optoelectronic devices, such as nanolasers and sensors. Nanowires (NWs) with an MgO shell exhibit enhanced band‐edge photoluminescence (PL), a result previously attributed to passivation of ZnO defects. However, we find that processing the ZnO NWs under low oxygen partial pressure leads to an MgO‐thickness‐dependent PL enhancement owing to the formation of optical cavity modes. Conversely, processing under higher oxygen partial pressure leads to NWs that support neither mode formation nor band‐edge PL enhancement. High‐resolution electron microscopy and density‐functional calculations implicate the ZnOm‐plane surface morphology as the key determinant of core‐shell structure and cavity‐mode optics. A ZnO surface with atomic steps along them‐plane in thec‐axis direction stimulates the growth of a smooth MgO shell that supports guided‐wave optical modes and enhanced UV PL. On the other hand, a smoother ZnO surface leads to nucleation of a rough cladding layer which supports neither enhanced UV PL nor optical cavity modes. Finite‐element analysis shows a clear correlation between allowed Fabry‐Perot and whispering gallery modes and enhanced UV‐PL. These results point the way to fabricating ZnO/MgO core‐shell nanowires for more efficient UV nanolasers, scintillators, and sensors.

     
    more » « less
  3. Abstract

    Vertical III-V nanowire (NW) arrays are promising candidates for infrared (IR) photodetection applications. Generally, NWs with large diameters are required for efficient absorption in the IR range. However, increasing the NW diameter results in a loss of spectral selectivity and an enhancement in the photodetector dark current. Here, we propose a nanophotonic engineering approach to achieving spectrally-selective light absorption while minimizing the volume of the absorbing medium. Based on simulations performed using rigorous coupled-wave analysis (RCWA) techniques, we demonstrate dramatic tunability of the short-wavelength infrared (SWIR) light absorption properties of InAs NWs with base segments embedded in a reflective backside Au layer and with partial GaAs0.1Sb0.9shell segment coverage. Use of a backside reflector results in the generation of a delocalized evanescent field around the NW core segment that can be selectively captured by the partially encapsulating GaAs0.1Sb0.9shell layer. By adjusting the core and shell dimensions, unity absorption can be selectively achieved in the 2 to 3μm wavelength range. Due to the transparency of the GaAs0.1Sb0.9shell segments, wavelength-selective absorption occurs only along the InAs core segments where they are partially encapsulated. The design presented in this work paves the path toward spectrally-selective and polarization-dependent NW array-based photodetectors, in which carrier collection efficiencies can be enhanced by positioning active junctions at the predefined locations of the partial shell segments.

     
    more » « less
  4. Catalyst-free, position-controlled indium arsenide (InAs) nanowires (NWs) of variable diameters were grown on Si (111) by selective-area epitaxy (SAE). Ultrafast pump-probe spectroscopy was conducted, from which carrier recombination mechanisms on the NW surface and interior were resolved and characterized. NWs grown using SAE demonstrated high optical quality, showing minority carrier lifetimes more than two-fold longer than that of the randomly-positioned (RP) NWs. The extracted SAE-InAs NW interior recombination lifetime was found to be as long as 7.2ns, 13X longer than previous measurements on RP-NWs; and the surface recombination velocity 4154cm·s- 1. Transmission electron microscopy revealed a high density of stacking defects within the NWs, suggesting that interior recombination lifetime can be further increased by improving NW interior crystalline quality.

     
    more » « less
  5. Abstract

    The practical implementation of Li metal batteries is hindered by difficulties in controlling the Li metal plating microstructure. While previous atomic layer deposition (ALD) studies have focused on directly coating Li metal with thin films for the passivation of the electrode–electrolyte interface, a different approach is adopted, situating the ALD film beneath Li metal and directly on the copper current collector. A mechanistic explanation for this simple strategy of controlling the Li metal plating microstructure using TiO2grown on copper foil by ALD is presented. In contrast to previous studies where ALD‐grown layers act as artificial interphases, this TiO2layer resides at the copper–Li metal interface, acting as a nucleation layer to improve the Li metal plating morphology. Upon lithiation of TiO2, a LixTiO2complex forms; this alloy provides a lithiophilic surface layer that enables uniform and reversible Li plating. The reversibility of lithium deposition is evident from the champion cell (5 nm TiO2), which displays an average Coulombic efficiency (CE) of 96% after 150 cycles at a moderate current density of 1 mA cm−2. This simple approach provides the first account of the mechanism of ALD‐derived Li nucleation control and suggests new possibilities for future ALD‐synthesized nucleation layers.

     
    more » « less