skip to main content


Title: Self-Efficacy Versus Gender: Project-Based Active Learning Techniques in Biomedical Engineering Introductory Computer Programming Courses
Abstract Engineering education has increasingly embraced active learning techniques within a variety of curricula. In particular, project-based active learning techniques have a significant potential to enhance students' learning experience. In this study, we implemented project-based techniques in biomedical engineering (BME) classes, and we investigated the effects of active learning on students' self-efficacy as an effective predictor of students' academic persistence and their career decision-making. Differences in self-efficacy were compared across genders. A high level of internal consistency was observed for both academic and career-oriented scales, as determined by Cronbach's alpha values of 0.908 and 0.862, respectively. While average scores of all survey questions indicated improvement in students' academic and career-oriented self-efficacy measures, significant improvements were observed in “clearer vision of programming application in engineering” and “BME careers,” as well as in “expectation of success in a future BME career that involves developing medical devices” after the completion of the project-based activity (p = 0.002, 0.023, and 0.034, respectively). For two of the survey questions, female students reflected a significantly lower “self-confidence about understanding the most complex course material” as well as a significantly lower “willingness to have a future career in BME that involves intensive computer programing” as compared to male students (p = 0.035 and 0.024, respectively). We have further discussed possible explanations for the observed differences and multiple potential ways to enhance gender equality in STEM fields from a self-efficacy standpoint.  more » « less
Award ID(s):
2049088 1846715
NSF-PAR ID:
10213687
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Biomechanical Engineering
Volume:
142
Issue:
11
ISSN:
0148-0731
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Several consensus reports cite a critical need to dramatically increase the number and diversity of STEM graduates over the next decade. They conclude that a change to evidence-based instructional practices, such as concept-based active learning, is needed. Concept-based active learning involves the use of activity-based pedagogies whose primary objectives are to make students value deep conceptual understanding (instead of only factual knowledge) and then to facilitate their development of that understanding. Concept-based active learning has been shown to increase academic engagement and student achievement, to significantly improve student retention in academic programs, and to reduce the performance gap of underrepresented students. Fostering students' mastery of fundamental concepts is central to real world problem solving, including several elements of engineering practice. Unfortunately, simply proving that these instructional practices are more effective than traditional methods for promoting student learning, for increasing retention in academic programs, and for improving ability in professional practice is not enough to ensure widespread pedagogical change. In fact, the biggest challenge to improving STEM education is not the need to develop more effective instructional practices, but to find ways to get faculty to adopt the evidence-based pedagogies that already exist. In this project we seek to propagate the Concept Warehouse, a technological innovation designed to foster concept-based active learning, into Mechanical Engineering (ME) and to study student learning with this tool in five diverse institutional settings. The Concept Warehouse (CW) is a web-based instructional tool that we developed for Chemical Engineering (ChE) faculty. It houses over 3,500 ConcepTests, which are short questions that can rapidly be deployed to engage students in concept-oriented thinking and/or to assess students’ conceptual knowledge, along with more extensive concept-based active learning tools. The CW has grown rapidly during this project and now has over 1,600 faculty accounts and over 37,000 student users. New ConcepTests were created during the current reporting period; the current numbers of questions for Statics, Dynamics, and Mechanics of Materials are 342, 410, and 41, respectively. A detailed review process is in progress, and will continue through the no-cost extension year, to refine question clarity and to identify types of new questions to fill gaps in content coverage. There have been 497 new faculty accounts created after June 30, 2018, and 3,035 unique students have answered these mechanics questions in the CW. We continue to analyze instructor interviews, focusing on 11 cases, all of whom participated in the CW Community of Practice (CoP). For six participants, we were able to compare use of the CW both before and after participating in professional development activities (workshops and/or a community or practice). Interview results have been coded and are currently being analyzed. To examine student learning, we recruited faculty to participate in deploying four common questions in both statics and dynamics. In statics, each instructor agreed to deploy the same four questions (one each for Rigid Body Equilibrium, Trusses, Frames, and Friction) among their overall deployments of the CW. In addition to answering the question, students were also asked to provide a written explanation to explain their reasoning, to rate the confidence of their answers, and to rate the degree to which the questions were clear and promoted deep thinking. The analysis to date has resulted in a Work-In-Progress paper presented at ASEE 2022, reporting a cross-case comparison of two instructors and a Work-In-Progress paper to be presented at ASEE 2023 analyzing students’ metacognitive reflections of concept questions. 
    more » « less
  2. This study examines the relationship between participation in extracurricular college activities and its possible impact on students’ career interests in entrepreneurship and innovation. This work draws from the Engineering Majors Survey (EMS), focusing on innovation self-efficacy and how it may be impacted by participation in various extracurricular college activities. The term self-efficacy as developed by Albert Bandura is defined as “people’s judgment of their capabilities to organize and execute courses of action required to attain designated types of performances” (Bandura, 1986, p.391). Innovation self-efficacy is a variable consisting of six items that correspond to Dyer’s five discovery skills seen as important for innovative behavior. In order to investigate the relationship between participation in certain activities and innovation self-efficacy, the 20 activities identified in the EMS survey were grouped thematically according to their relevance to entrepreneurship-related topics. Students were divided into two groups using K-means cluster analysis according to their innovation selfefficacy (ISE.6) score. Cluster one (C1) contained the students with higher ISE.6 scores, Cluster two (C2) included the students with lower innovation self-efficacy scores. This preliminary research focused on descriptive analyses while also looking at different background characteristics such as gender, academic status and underrepresented minority status (URM). The results show that students in C1 (high ISE.6) have significantly greater interest in starting an organization (78.1%) in comparison to C2 students (21.9%) (X²=81.11, p=.000, Cramer’s V= .124). At the same time, male students reported significantly higher ISE.6 scores (M=66.70, SD=17.53) than female students (M=66.70, SD=17.53) t(5192)=-5.220 p=.000 and stronger intentions to start an organization than female students (15% and 6.1 % respectively). Cluster affiliation representing innovation self-efficacy as well as gender seems to play a role when looking at career interest in entrepreneurship. According to Social Cognitive Career Theory, self-efficacy is influenced by learning experiences. In this work activities referring to hands-on activities in entrepreneurship and innovation are highly correlated with ISE.6 (r=.206, p=.000), followed by non-hands-on exposure to entrepreneurship and innovation. At the same time, students in C1 participated almost twice as often in hands-on activities in entrepreneurship and innovation (28.6%) as compared to students in C2 (15.2%). Interestingly in C1, there were no gender differences in participation in hands-on activities in entrepreneurship and innovation. Overall, female students (M=4.66, SD=2.5) participated in significantly more activities than male students (M=3.9, SD=2.64), t(5192)=9.65 p=.000. All in all, these results reveal interesting insights into the potential benefits of taking part in innovation and entrepreneurship-related activities and their impact on students’ innovation self-efficacy and interests in corresponding careers. 
    more » « less
  3. POSTER. Presented at the Symposium (9/12/2019) Abstract: The Academy of Engineering Success (AcES) employs literature-based, best practices to support and retain underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. AcES was established in 2012 and has been supported via NSF S-STEM award number 1644119 since 2016. The 2016, 2017, and 2018 cohorts consist of 12, 20, and 22 students, respectively. Five S-STEM supported scholarships were awarded to the 2016 cohort, seven scholarships were awarded to students from the 2017 cohort, and six scholarships were awarded to students from the 2018 cohort. AcES students participate in a one-week summer bridge experience, a common fall semester course focused on professional development, and a common spring semester course emphasizing the role of engineers in societal development. Starting with the summer bridge experience, and continuing until graduation, students are immersed in curricular and co-curricular activities with the goals of fostering feelings of institutional inclusion and belonging in engineering, providing academic support and student success skills, and professional development. The aforementioned goals are achieved by providing (1) opportunities for faculty-student, student-student, and industry mentor-student interaction, (2) academic support, and student success education in areas such as time management and study skills, and (3) facilitated career and major exploration. Four research questions are being examined, (1) What is the relationship between participation in the AcES program and participants’ academic success?, (2) What aspects of the AcES program most significantly impact participants’ success in engineering, (3) How do AcES students seek to overcome challenges in studying engineering, and (4) What is the longitudinal impact of the AcES program in terms of motivation, perceptions, feelings of inclusion, outcome expectations of the participants and retention? Students enrolled in the AcES program participate in the GRIT, LAESE, and MSLQ surveys, focus groups, and one-on-one interviews at the start and end of each fall semester and at the end of the spring semester. The surveys provide a measure of students’ GRIT, general self-efficacy, engineering self-efficacy, test anxiety, math outcome efficacy, intrinsic value of learning, inclusion, career expectations, and coping efficacy. Focus group and interview responses are analyzed in order to answer research questions 2, 3, and 4. Survey responses are analyzed to answer research question 4, and institutional data such as GPA is used to answer research question 1. An analysis of the 2017 AcES cohort survey responses produced a surprising result. When the responses of AcES students who retained were compared to the responses of AcES students who left engineering, those who left engineering had higher baseline values of GRIT, career expectations, engineering self-efficacy, and math outcome efficacy than those students who retained. A preliminary analysis of the 2016, 2017, and 2018 focus group and one-on-one interview responses indicates that the Engineering Learning Center, tutors, organized out of class experiences, first-year seminar, the AcES cohort, the AcES summer bridge, the AcES program, AcES Faculty/Staff, AcES guest lecturers, and FEP faculty/Staff are viewed as valuable by students and cited with contributing to their success in engineering. It is also evident that AcES students seek help from peers, seek help from tutors, use online resources, and attend office hours to overcome their challenges in studying engineering. 
    more » « less
  4. null (Ed.)
    This study investigates career intentions and students’ engineering attitudes in BME, with a focus on gender differences. Data from n = 716 undergraduate biomedical engineering students at a large public research institution in the United States were analyzed using hierarchical agglomerative cluster analysis. Results revealed five clusters of intended post-graduation plans: Engineering Job and Graduate School, Any Job, Non-Engineering Job and Graduate School, Any Option, and Any Graduate School. Women were evenly distributed across clusters; there was no evidence of gendered career preferences. The main findings in regard to engineering attitudes reveal significant differences by cluster in interest, attainment value, utility value, and professional identity, but not in academic self-efficacy. Yet, within clusters the only gender differences were women’s lower engineering academic self-efficacy, interest and professional identity compared to men. Implications and areas of future research are discussed. 
    more » « less
  5. Understanding the underlying psychological constructs that affect undergraduate engineering students’ academic achievement and persistence can inform curricular and programmatic changes in engineering education, with the goal of increasing access and advancement in engineering for a diverse population of students. As part of a larger study examining student experiences in a civil engineering department undergoing curricular and cultural changes, this quantitative study investigated the relationship between goal orientation, agency, and time-oriented motivation, differences in this relationship across academic years, and potential influences from personality types. The larger project seeks to examine the motivation, identity, and sense of belonging for undergraduate civil engineering students; this paper seeks to construct a conceptual model explaining the interactive nature of some of these constructs. A previously tested and established survey that draws from multiple theories of motivation and other affective factors such as agency and identity, and that includes Big 5 personality constructs, was used to collect data from second, third-and fourth-year civil engineering students over a two-year period. Prior studies have focused on the instrument’s latent constructs with sense of belonging. However, no analysis has been conducted to examine how some of the constructs influence each other. Specific latent constructs of goal orientation, agency (students’ beliefs that their career in science or engineering can lead to positive effects on the world), FTP, and personality were selected for secondary data analysis based on theory presented in the literature about relationships between motivation, goal setting, agency, and student perceptions of their future. The sample size of respondents was 843; data cleaning and deletion of missing data (65cases; 7.7%) resulted in a final sample size of 778(92.3% of the original data). This included328 second year, 294 third year and 156 fourth year students. Statistical analyses and modeling included bivariate correlational analysis, MANOVA and MANCOVA. Results indicated significant correlation between goal orientation, agency, and time-oriented motivation. Furthermore, differences in these constructs between academic years and personality type influenced the relationship. FTP differed between sophomores and seniors, with seniors having higher scores, suggesting motivation increases as time in the program increases. Personality significantly influenced these relationships in different ways but had the strongest effect on agency. The findings that certain types of people are not only motivated to go into civil engineering but believe their major will make a difference in the world, have implications for educational practice. Results align with current literature but also shed light onto the effects of personality on time-oriented motivation and agency, expanding theory in engineering education. Further research is needed to determine if the effects of personality hold true for other engineering and science majors. 
    more » « less