skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthesis of lead-free Cs 4 (Cd 1−x Mn x )Bi 2 Cl 12 (0 ≤ x ≤ 1) layered double perovskite nanocrystals with controlled Mn–Mn coupling interaction
Lead-free perovskites and their analogues have been extensively studied as a class of next-generation luminescent and optoelectronic materials. Herein, we report the synthesis of new colloidal Cs 4 M( ii )Bi 2 Cl 12 (M( ii ) = Cd, Mn) nanocrystals (NCs) with unique luminescence properties. The obtained Cs 4 M( ii )Bi 2 Cl 12 NCs show a layered double perovskite (LDP) crystal structure with good particle stability. Density functional theory calculations show that both samples exhibit a wide, direct bandgap feature. Remarkably, the strong Mn–Mn coupling effect of the Cs 4 M( ii )Bi 2 Cl 12 NCs results in an ultra-short Mn photoluminescence (PL) decay lifetime of around 10 μs, around two orders of magnitude faster than commonly observed Mn 2+ dopant emission in NCs. Diluting the Mn 2+ ion concentration through forming Cs 4 (Cd 1−x Mn x )Bi 2 Cl 12 (0 < x < 1) alloyed LDP NCs leads to prolonged PL lifetimes and enhanced PL quantum yields. Our study provides the first synthetic example of Bi-based LDP colloidal NCs with potential for serving as a new category of stable lead-free perovskite-type materials for various applications.  more » « less
Award ID(s):
1943930
PAR ID:
10213793
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
12
Issue:
45
ISSN:
2040-3364
Page Range / eLocation ID:
23191 to 23199
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract All‐inorganic lead halide perovskite nanocrystals (NCs) have great optoelectronic properties with promising applications in light‐emitting diodes (LEDs), lasers, photodetectors, solar cells, and photocatalysis. However, the intrinsic toxicity of Pb and instability of the NCs impede their broad applications. Shell‐coating is an effective method for enhanced environmental stability while reducing toxicity by choosing non‐toxic shell materials such as metal oxides, polymers, silica, etc. However, multiple perovskite NCs can be encapsulated within the shell material and a uniform epitaxial‐type shell growth of well‐isolated NCs is still challenging. In this work, lead‐free vacancy‐ordered double perovskite Cs2SnX6(X = Cl, Br, and I) shells are epitaxially grown on the surface of CsPbX3NCs by a hot‐injection method. The effectiveness of the non‐toxic double perovskite shell protection is demonstrated by the enhanced environmental and phase stability against UV illumination and water. In addition, the photoluminescence quantum yields (PL QYs) increase for the CsPbCl3and CsPbBr3NCs after shelling because of the type I band alignment of the core/shell materials, while enhanced charge transport properties obtained from CsPbI3/Cs2SnI6core/shell NCs are due to the efficient charge separation in the type II core/shell band alignment. 
    more » « less
  2. Blue emitting Sn-based lead-free halide perovskite nanocrystals (NCs) are considered to be a promising material in lighting and displays. However, industrialised fabrication of blue-emitting NCs still remains a significant challenge due to the use of toxic solvents and optical instability, not mentioning in large-scale synthesis. In this work, a green-route synthesis of blue-emitting lead-free halide perovskite Cs 2 SnCl 6 powders is developed, in which deionized water with a small amount of inorganic acid is used as the solvent and the synthesis of the Cs 2 SnCl 6 powders is achieved on a microfluidic platform. Using the Cs 2 SnCl 6 powders, we prepare Cs 2 SnCl 6 NCs via an ultrasonication process. Changing the volume ratio of the ligands (oleic acid to oleylamine) can alter the photoluminescence (PL) characteristics of the prepared NCs, including the PL-peak wavelength, PL-peak intensity and quantum yield. The highest photoluminescence quantum yield (PLQY) of 13.4% is achieved by the Cs 2 SnCl 6 NCs prepared with the volume ratio of oleic acid to oleylamine of 40 μL to 10 μL. A long-term PL stability test demonstrates that the as-synthesized Cs 2 SnCl 6 NCs can retain a stable PLQY over a period of 60 days. This work opens up a new path for a large-scale green-route synthesis of blue-emitting Sn-based lead-free NCs, such as Cs 2 SnX 6 (Cl, Br and I), towards their applications in optoelectronics. 
    more » « less
  3. Organic–inorganic hybrid lead-based perovskites experience significant environmental instability under ambient moist air and are not environmentally benign due to the usage of toxic Pb. Here, we report a new approach to synthesize lead-free all inorganic perovskites (Cs 2 SnI x Cl 6−x ) using hydriodic acid (HI) demonstrating greatly enhanced environmental stability and tunable optical properties by controlling the I − /Cl − ratios. Single phase perovskites can be achieved with a low iodine or chlorine content, and a phase separation occurs in the binary system with closer iodine and chlorine dopings. UV-vis diffuse reflectance and photoluminescence measurements reveal tunable band gaps of Cs 2 SnI x Cl 6−x perovskites from the UV to the infrared region. The mixed halide perovskite with a lower chloride content shows significantly higher photoluminescence intensity. The thermal stability of mixed halide all-inorganic perovskites is continuously improved as the Cl content increases. The synthesis of Sn-based perovskites with tunable optical properties and environmental stability represents one step further toward the realization of the stable lead-free all inorganic perovskites. 
    more » « less
  4. All-inorganic halide perovskite nanocrystals (NCs) offer impressive optoelectronic properties for light harvesting, energy conversion, and photoredox applications, with two-dimensional (2D) perovskite NCs further increasing these prospects due to their improved photoluminescence (PL) tuneability, impressive color purity, high in-plane charge transport, and large lateral dimensions which is advantageous for device integration. However, the synthesis of 2D perovskites is still challenging, especially toward large-scale applications. In this study, through the control of surface ligand composition and concentration of a mixture of short (octanoic acid and octylamine, 8-carbon chain) and long (oleic acid and oleylamine, 18-carbon chain) ligands, we have developed an extremely facile ligand-mediated synthesis of 2D CsPbX 3 (X = Cl, Br, or mixture thereof) nanoplatelets (NPLs) at room temperature in an open vessel. In addition, the developed method is highly versatile and can be applied to synthesize Mn-doped CsPbX 3 NPLs, showing a systematic increase in the total PL quantum yield (QY) and the Mn-dopant emission around 600 nm with increasing Mn and Cl concentrations. The reaction occurs in toluene by the introduction of CsX, PbX 2 , and MnX 2 precursors under ambient conditions, which requires no harsh acids, avoids excessive lead waste, little thermal energy input, and is potentially scalable toward industrial applications. 
    more » « less
  5. Combining experimental and theoretical studies, we investigate the role of R-site (R = Y, Sm, Bi) element on the phase formation and thermal stability of R 2 (Mn 1−x Fe x ) 4 O 10−δ ( x = 0, 0.5, 1) mullite-type oxides. Our results show a distinct R-site dependent phase behavior for mullite-type oxides as Fe is substituted for Mn: 100% mullite-type phase was formed in (Y, Sm, Bi) 2 Mn 4 O 10 ; 55% and 18% of (Y, Sm) 2 Mn 2 Fe 2 O 10−δ was found when R = Y and Sm, respectively, for equal Fe and Mn molar concentrations in the reactants, whereas Bi formed 54% O10- and 42% O9-mixed mullite-type phases. Furthermore, when the reactants contain 100% Fe, no mullite-type phase was formed for R = Y and Sm, but a sub-group transition to Bi 2 Fe 4 O 9 O9-phase was found for R = Bi. Thermogravimetric analysis and density functional theory (DFT) calculation results show a decreasing thermal stability in O10-type structure with increasing Fe incorporation; for example, the decomposition temperature is 1142 K for Bi 2 Mn 2 Fe 2 O 10−δ vs. 1217 K for Bi 2 Mn 4 O 10 . On the other hand, Bi 2 Fe 4 O 9 O9-type structure is found to be thermally stable up to 1227 K. These findings are explained by electronic structure calculations: (1) as Fe concentration increases, Jahn–Teller distortion results in mid band-gap empty states from unstable Fe 4+ occupied octahedra, which is responsible for the decrease in O10 structure stability; (2) the directional sp orbital hybridization unique to Bi effectively stabilizes the mullite-type structure as Fe replaces Mn. 
    more » « less