skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Breakthrough Listen Search for Intelligent Life: Wide-bandwidth Digital Instrumentation for the CSIRO Parkes 64-m Telescope
Breakthrough Listen is a ten-year initiative to search for signatures of technologies created by extraterrestrial civilizations at radio and optical wavelengths. Here, we detail the digital data recording system deployed for Breakthrough Listen observations at the 64-m aperture CSIRO Parkes Telescope in New South Wales, Australia. The recording system currently implements two recording modes: a dual-polarization, 1.125 GHz bandwidth mode for single beam observations, and a 26-input, 308-MHz bandwidth mode for the 21-cm multibeam receiver. The system is also designed to support a 3 GHz single-beam mode for the forthcoming Parkes ultra-wideband feed. In this paper, we present details of the system architecture, provide an overview of hardware and software, and present initial performance results.  more » « less
Award ID(s):
1711254
PAR ID:
10213854
Author(s) / Creator(s):
Date Published:
Journal Name:
Publications of the Astronomical Society of Australia
Volume:
35
ISSN:
1448-6083
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A line of sight toward the Galactic Center (GC) offers the largest number of potentially habitable systems of any direction in the sky. The Breakthrough Listen program is undertaking the most sensitive and deepest targeted SETI surveys toward the GC. Here, we outline our observing strategies with Robert C. Byrd Green Bank Telescope (GBT) and Parkes telescope to conduct 600 hr of deep observations across 0.7–93 GHz. We report preliminary results from our survey for extraterrestrial intelligence (ETI) beacons across 1–8 GHz with 7.0 and 11.2 hr of observations with Parkes and GBT, respectively. With our narrowband drifting signal search, we were able to place meaningful constraints on ETI transmitters across 1–4 GHz and 3.9–8 GHz with EIRP limits of ≥4 × 10^18 W among 60 million stars and ≥5 × 10^17 W among half a million stars, respectively. For the first time, we were able to constrain the existence of artificially dispersed transient signals across 3.9–8 GHz with EIRP ≥1 × 10^14 W/Hz with a repetition period ≤4.3 hr. We also searched our 11.2 hr of deep observations of the GC and its surrounding region for Fast Radio Burst–like magnetars with the DM up to 5000 pc cm^−3 with maximum pulse widths up to 90 ms at 6 GHz. We detected several hundred transient bursts from SGR J1745−2900, but did not detect any new transient bursts with the peak luminosity limit across our observed band of ≥10^31 erg s^−1 and burst rate of ≥0.23 burst hr^−1. These limits are comparable to bright transient emission seen from other Galactic radio-loud magnetars, constraining their presence at the GC. 
    more » « less
  2. Abstract The Breakthrough Listen search for intelligent life is, to date, the most extensive technosignature search of nearby celestial objects. We present a radio technosignature search of the centers of 97 nearby galaxies, observed by Breakthrough Listen at the Robert C. Byrd Green Bank Telescope. We performed a narrowband Doppler drift search using theturboSETIpipeline with a minimum signal-to-noise parameter threshold of 10, across a drift rate range of ±4 Hz s−1, with a spectral resolution of 3 Hz and a time resolution of ∼18.25 s. We removed radio frequency interference (RFI) by using an on-source/off-source cadence pattern of six observations and discarding signals with Doppler drift rates of 0. We assess factors affecting the sensitivity of the Breakthrough Listen data reduction and search pipeline using signal injection and recovery techniques and apply new methods for the investigation of the RFI environment. We present results in four frequency bands covering 1–11 GHz, and place constraints on the presence of transmitters with equivalent isotropic radiated power on the order of 1026W, corresponding to the theoretical power consumption of Kardashev Type II civilizations. 
    more » « less
  3. We describe archival observations and analysis of the HD 110067 planetary system using the Green Bank Telescope (GBT) as part of the Breakthrough Listen search for technosignatures. The star hosts six sub-Neptune planets in resonant orbits, and we tune the drift rate range of our search to match the properties of the system derived by Luque et al. Our observations cover frequencies from 1 to 11.2 GHz, using the GBT’s L, S, C, and X-band receivers, to an equivalent isotropic radiated power limit of ∼3 × 10^12 W. No technosignatures were found, but this unusual system remains an interesting target for future technosignature searches. 
    more » « less
  4. Abstract The Breakthrough Listen Initiative is conducting a program using multiple telescopes around the world to search for “technosignatures”: artificial transmitters of extraterrestrial origin from beyond our solar system. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) Collaboration joined this program in 2018 and provides the capability to search for one particular technosignature: optical pulses of a few nanoseconds in duration detectable over interstellar distances. We report here on the analysis and results of dedicated VERITAS observations of Breakthrough Listen targets conducted in 2019 and 2020 and of archival VERITAS data collected since 2012. Thirty hours of dedicated observations of 136 targets and 249 archival observations of 140 targets were analyzed and did not reveal any signals consistent with a technosignature. The results are used to place limits on the fraction of stars hosting transmitting civilizations. We also discuss the minimum pulse sensitivity of our observations and present VERITAS observations of CALIOP: a space-based pulsed laser on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. The detection of these pulses with VERITAS, using the analysis techniques developed for our technosignature search, allows a test of our analysis efficiency and serves as an important proof of principle. 
    more » « less
  5. Abstract The aim of the search for extraterrestrial intelligence (SETI) is to find technologically capable life beyond Earth through their technosignatures. On 2019 April 29, the Breakthrough Listen SETI project observed Proxima Centauri with the Parkes ‘Murriyang’ radio telescope. These data contained a narrowband signal with characteristics broadly consistent with a technosignature near 982 MHz (‘blc1’). Here we present a procedure for the analysis of potential technosignatures, in the context of the ubiquity of human-generated radio interference, which we apply to blc1. Using this procedure, we find that blc1 is not an extraterrestrial technosignature, but rather an electronically drifting intermodulation product of local, time-varying interferers aligned with the observing cadence. We find dozens of instances of radio interference with similar morphologies to blc1 at frequencies harmonically related to common clock oscillators. These complex intermodulation products highlight the necessity for detailed follow-up of any signal of interest using a procedure such as the one outlined in this work. 
    more » « less