skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rucio beyond ATLAS: experiences from Belle II, CMS, DUNE, EISCAT3D, LIGO/VIRGO, SKA, XENON
For many scientific projects, data management is an increasingly complicated challenge. The number of data-intensive instruments generating unprecedented volumes of data is growing and their accompanying workflows are becoming more complex. Their storage and computing resources are heterogeneous and are distributed at numerous geographical locations belonging to different administrative domains and organisations. These locations do not necessarily coincide with the places where data is produced nor where data is stored, analysed by researchers, or archived for safe long-term storage. To fulfil these needs, the data management system Rucio has been developed to allow the high-energy physics experiment ATLAS at LHC to manage its large volumes of data in an efficient and scalable way. But ATLAS is not alone, and several diverse scientific projects have started evaluating, adopting, and adapting the Rucio system for their own needs. As the Rucio community has grown, many improvements have been introduced, customisations have been added, and many bugs have been fixed. Additionally, new dataflows have been investigated and operational experiences have been documented. In this article we collect and compare the common successes, pitfalls, and oddities that arose in the evaluation efforts of multiple diverse experiments, and compare them with the ATLAS experience. This includes the high-energy physics experiments Belle II and CMS, the neutrino experiment DUNE, the scattering radar experiment EISCAT3D, the gravitational wave observatories LIGO and VIRGO, the SKA radio telescope, and the dark matter search experiment XENON.  more » « less
Award ID(s):
1841475
PAR ID:
10213855
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W.
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
245
ISSN:
2100-014X
Page Range / eLocation ID:
11006
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Global Event Processor (GEP) FPGA is an area-constrained, performance-critical element of the Large Hadron Collider's (LHC) ATLAS experiment. It needs to very quickly determine which small fraction of detected events should be retained for further processing, and which other events will be discarded. This system involves a large number of individual processing tasks, brought together within the overall Algorithm Processing Platform (APP), to make filtering decisions at an overall latency of no more than 8ms. Currently, such filtering tasks are hand-coded implementations of standard deterministic signal processing tasks.In this paper we present methods to automatically create machine learning based algorithms for use within the APP framework, and demonstrate several successful such deployments. We leverage existing machine learning to FPGA flows such ashls4mlandfwXto significantly reduce the complexity of algorithm design. These have resulted in implementations of various machine learning algorithms with latencies of 1.2 μs and less than 5% resource utilization on an Xilinx XCVU9P FPGA. Finally, we implement these algorithms into the GEP system and present their actual performance.Our work shows the potential of using machine learning in the GEP for high-energy physics applications. This can significantly improve the performance of the trigger system and enable the ATLAS experiment to collect more data and make more discoveries. The architecture and approach presented in this paper can also be applied to other applications that require real-time processing of large volumes of data. 
    more » « less
  2. De_Vita, R; Espinal, X; Laycock, P; Shadura, O (Ed.)
    Effective metadata management is a consistent challenge faced by many scientific experiments. These challenges are magnified by the evolving needs of the experiment, the intricacies of seamlessly integrating a new system with existing analytical frameworks, and the crucial mandate to maintain database integrity. In this work we present the various challenges faced by experiments that produce a large amount of metadata and describe the solution used by the XENON experiment for metadata management. 
    more » « less
  3. In this article we document the current analysis software training and onboarding activities in several High Energy Physics (HEP) experiments: ATLAS, CMS, LHCb, Belle II and DUNE. Fast and efficient onboarding of new collaboration members is increasingly important for HEP experiments. With rapidly increasing data volumes and larger collaborations the analyses and consequently, the related software, become ever more complex. This necessitates structured onboarding and training. Recognizing this, a meeting series was held by the HEP Software Foundation (HSF) in 2022 for experiments to showcase their initiatives. Here we document and analyze these in an attempt to determine a set of key considerations for future HEP experiments. 
    more » « less
  4. The ATLAS experiment has developed extensive software and distributed computing systems for Run 3 of the LHC. These systems are described in detail, including software infrastructure and workflows, distributed data and workload management, database infrastructure, and validation. The use of these systems to prepare the data for physics analysis and assess its quality are described, along with the software tools used for data analysis itself. An outlook for the development of these projects towards Run 4 is also provided. 
    more » « less
  5. Abstract It has become common for researchers to make their data publicly available to meet the data management and accessibility requirements of funding agencies and scientific publishers. However, many researchers face the challenge of determining what data to preserve and share and where to preserve and share those data. This can be especially challenging for those who run dynamical models, which can produce complex, voluminous data outputs, and have not considered what outputs may need to be preserved and shared as part of the project design. This manuscript presents findings from the NSF EarthCube Research Coordination Network project titled “What About Model Data? Best Practices for Preservation and Replicability” (https://modeldatarcn.github.io/). These findings suggest that if the primary goal of sharing data are to communicate knowledge, most simulation-based research projects only need to preserve and share selected model outputs along with the full simulation experiment workflow. One major result of this project has been the development of a rubric, designed to provide guidance for making decisions on what simulation output needs to be preserved and shared in trusted community repositories to achieve the goal of knowledge communication. This rubric, along with use cases for selected projects, provide scientists with guidance on data accessibility requirements in the planning process of research, allowing for more thoughtful development of data management plans and funding requests. Additionally, this rubric can be referred to by publishers for what is expected in terms of data accessibility for publication. 
    more » « less