skip to main content


Title: Memristive Behavior Enabled by Amorphous–Crystalline 2D Oxide Heterostructure
Abstract

The emergence of memristive behavior in amorphous–crystalline 2D oxide heterostructures, which are synthesized by atomic layer deposition (ALD) of a few‐nanometer amorphous Al2O3layers onto atomically thin single‐crystalline ZnO nanosheets, is demonstrated. The conduction mechanism is identified based on classic oxygen vacancy conductive channels. ZnO nanosheets provide a 2D host for oxygen vacancies, while the amorphous Al2O3facilitates the generation and stabilization of the oxygen vacancies. The conduction mechanism in the high‐resistance state follows Poole–Frenkel emission, and in the the low‐resistance state is fitted by the Mott–Gurney law. From the slope of the fitting curve, the mobility in the low‐resistance state is estimated to be ≈2400 cm2V−1s−1, which is the highest value reported in semiconductor oxides. When annealed at high temperature to eliminate oxygen vacancies, Al is doped into the ZnO nanosheet, and the memristive behavior disappears, further confirming the oxygen vacancies as being responsible for the memristive behavior. The 2D heterointerface offers opportunities for new design of high‐performance memristor devices.

 
more » « less
Award ID(s):
1720415
NSF-PAR ID:
10457613
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
22
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ultrathin (sub-2 nm) Al2O3/MgO memristors were recently developed using anin vacuoatomic layer deposition (ALD) process that minimizes unintended defects and prevents undesirable leakage current. These memristors provide a unique platform that allows oxygen vacancies (VO) to be inserted into the memristor with atomic precision and study how this affects the formation and rupture of conductive filaments (CFs) during memristive switching. Herein, we present a systematic study on three sets of ultrathin Al2O3/MgO memristors with VO-doping via modular MgO atomic layer insertion into an otherwise pristine insulating Al2O3atomic layer stack (ALS) using anin vacuoALD. At a fixed memristor thickness of 17 Al2O3/MgO atomic layers (∼1.9 nm), the properties of the memristors were found to be affected by the number and stacking pattern of the MgO atomic layers in the Al2O3/MgO ALS. Importantly, the trend of reduced low-state resistance and the increasing appearance of multi-step switches with an increasing number of MgO atomic layers suggests a direct correlation between the dimension and dynamic evolution of the conducting filaments and the VOconcentration and distribution. Understanding such a correlation is critical to an atomic-scale control of the switching behavior of ultrathin memristors.

     
    more » « less
  2. Abstract

    Smart windows are energy‐efficient windows whose optical transparency can be switched between highly transparent and opaque states in response to incident solar illumination. Transparent and conductive metal nanomesh (NM) films are promising candidates for thermochromic smart windows due to their excellent thermal conductivity, high optical transparency at near infrared wavelengths, and outstanding stability. In this study, ZnO/Au/Al2O3NM films with periodicities of 200 and 370 nm are reported. The ZnO/Au/Al2O3NM film with a 370 nm periodicity exhibits a transmittance over 90% at 550 nm and sheet resistance lower than 20 Ω sq−1. Based on a standard figure of merit, this structure outperforms current state‐of‐the‐art NM films. Here, the integration of ZnO/Au/Al2O3NM films into a thermochromic perovskite smart window is also demonstrated. The transparency of the smart window structure is manipulated by transient resistive heating to trigger the thermochromic transition to the opaque state, which can be then maintained solely by 1‐sun, AM 1.5 G illumination. This climate‐adaptive, low power‐activated, and fast‐switching smart window structure opens new pathways toward its practical application in the real world.

     
    more » « less
  3. Abstract

    Oxide‐based resistive‐switching devices hold promise for solid‐state memory technology. Information encoding is accomplished by electrically switching the device between two nonvolatile states with low and high resistance states (LRS/HRS). It is generally accepted that the change between these states is due to the motion of oxygen vacancies forming a continuous (LRS) or gapped (HRS) filament between the electrodes. Direct assessments of filaments are rare due to their small size and the difficulty of locating the filament. Electron microscopy experiments reveal the filament structure and chemistry in TaO2.0 ± 0.2‐based 150 × 150 nm2devices with cross‐sectional geometry after forming with power dissipation lower than 1 mW. The filaments appear to be roughly hourglass‐shaped with a diameter of less than 10 nm and are composed of Ta‐rich and O‐poor mostly amorphous material with local compositions as Ta‐rich as TaO0.4. The as‐formed HRS has a gap up to 10 nm wide located next to the anode and composed of nearly stoichiometric TaO2.5. The tantalum and oxygen distribution is consistent with filaments formed by the motion of both Ta and O driven by temperature gradients (Soret effect) and an electric field. This interpretation points towards a new compact model of resistive‐switching devices.

     
    more » « less
  4. Abstract

    The development of solid‐state sodium‐ion batteries (SSSBs) heavily hinges on the development of an superionic Na+conductor (SSC) that features high conductivity, (electro)chemical stability, and deformability. The construction of heterogeneous structures offers a promising approach to comprehensively enhancing these properties in a way that differs from traditional structural optimization. Here, this work exploits the structural variance between high‐ and low‐coordination halide frameworks to develop a new class of halide heterogeneous structure electrolytes (HSEs). The halide HSEs incorporating a UCl3‐type high‐coordination framework and amorphous low‐coordination phase achieves the highest Na+conductivity (2.7 mS cm−1at room temperature, RT) among halide SSCs so far. By discerning the individual contribution of the crystalline bulk, amorphous region, and interface, this work unravels the synergistic ion conduction within halide HSEs and provides a comprehensive explanation of the amorphization effect. More importantly, the excellent deformability, high‐voltage stability, and expandability of HSEs enable effective SSSB integration. Using a cold‐pressed cathode electrode composite of uncoated Na0.85Mn0.5Ni0.4Fe0.1O2and HSEs, the SSSBs present stable cycle performance with a capacity retention of 91.0% after 100 cycles at 0.2 C.

     
    more » « less
  5. Abstract

    Cs2SnI6perovskite displays excellent air stability and a high absorption coefficient, promising for photovoltaic and optoelectronic applications. However, Cs2SnI6‐based device performance is still low as a result of lacking optimized synthesis approaches to obtain high quality Cs2SnI6crystals. Here, a new simple method to synthesize single crystalline Cs2SnI6perovskite at a liquid–liquid interface is reported. By controlling solvent conditions and Cs2SnI6supersaturation at the liquid–liquid interface, Cs2SnI6crystals can be obtained from 3D to 2D growth with controlled geometries such as octahedron, pyramid, hexagon, and triangular nanosheets. The formation mechanisms and kinetics of complex shapes/geometries of high quality Cs2SnI6crystals are investigated. Freestanding single crystalline 2D nanosheets can be fabricated as thin as 25 nm, and the lateral size can be controlled up to sub‐millimeter regime. Electronic property of the high quality Cs2SnI62D nanosheets is also characterized, featuring a n‐type conduction with a high carrier mobility of 35 cm2V−1s−1. The interfacial reaction‐controlled synthesis of high‐quality crystals and mechanistic understanding of the crystal growth allow to realize rational design of materials, and the manipulation of crystal growth can be beneficial to achieve desired properties for potential functional applications.

     
    more » « less