skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Multi-View Consistency for Relation Extraction via Mutual Information and Structure Prediction
Relation Extraction (RE) is one of the fundamental tasks in Information Extraction. The goal of this task is to find the semantic relations between entity mentions in text. It has been shown in many previous work that the structure of the sentences (i.e., dependency trees) can provide important information/features for the RE models. However, the common limitation of the previous work on RE is the reliance on some external parsers to obtain the syntactic trees for the sentence structures. On the one hand, it is not guaranteed that the independent external parsers can offer the optimal sentence structures for RE and the customized structures for RE might help to further improve the performance. On the other hand, the quality of the external parsers might suffer when applied to different domains, thus also affecting the performance of the RE models on such domains. In order to overcome this issue, we introduce a novel method for RE that simultaneously induces the structures and predicts the relations for the input sentences, thus avoiding the external parsers and potentially leading to better sentence structures for RE. Our general strategy to learn the RE-specific structures is to apply two different methods to infer the structures for the input sentences (i.e., two views). We then introduce several mechanisms to encourage the structure and semantic consistencies between these two views so the effective structure and semantic representations for RE can emerge. We perform extensive experiments on the ACE 2005 and SemEval 2010 datasets to demonstrate the advantages of the proposed method, leading to the state-of-the-art performance on such datasets.  more » « less
Award ID(s):
1747798
NSF-PAR ID:
10213958
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
34
Issue:
05
ISSN:
2159-5399
Page Range / eLocation ID:
9106 to 9113
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper studies the task of Relation Extraction (RE) that aims to identify the semantic relations between two entity mentions in text. In the deep learning models for RE, it has been beneficial to incorporate the syntactic structures from the dependency trees of the input sentences. In such models, the dependency trees are often used to directly structure the network architectures or to obtain the dependency relations between the word pairs to inject the syntactic information into the models via multi-task learning. The major problem with these approaches is the lack of generalization beyond the syntactic structures in the training data or the failure to capture the syntactic importance of the words for RE. In order to overcome these issues, we propose a novel deep learning model for RE that uses the dependency trees to extract the syntax-based importance scores for the words, serving as a tree representation to introduce syntactic information into the models with greater generalization. In particular, we leverage Ordered-Neuron Long-Short Term Memory Networks (ON-LSTM) to infer the model-based importance scores for RE for every word in the sentences that are then regulated to be consistent with the syntax-based scores to enable syntactic information injection. We perform extensive experiments to demonstrate the effectiveness of the proposed method, leading to the state-of-the-art performance on three RE benchmark datasets. 
    more » « less
  2. null (Ed.)
    Definition Extraction (DE) is one of the well-known topics in Information Extraction that aims to identify terms and their corresponding definitions in unstructured texts. This task can be formalized either as a sentence classification task (i.e., containing term-definition pairs or not) or a sequential labeling task (i.e., identifying the boundaries of the terms and definitions). The previous works for DE have only focused on one of the two approaches, failing to model the inter-dependencies between the two tasks. In this work, we propose a novel model for DE that simultaneously performs the two tasks in a single framework to benefit from their inter-dependencies. Our model features deep learning architectures to exploit the global structures of the input sentences as well as the semantic consistencies between the terms and the definitions, thereby improving the quality of the representation vectors for DE. Besides the joint inference between sentence classification and sequential labeling, the proposed model is fundamentally different from the prior work for DE in that the prior work has only employed the local structures of the input sentences (i.e., word-to-word relations), and not yet considered the semantic consistencies between terms and definitions. In order to implement these novel ideas, our model presents a multi-task learning framework that employs graph convolutional neural networks and predicts the dependency paths between the terms and the definitions. We also seek to enforce the consistency between the representations of the terms and definitions both globally (i.e., increasing semantic consistency between the representations of the entire sentences and the terms/definitions) and locally (i.e., promoting the similarity between the representations of the terms and the definitions). The extensive experiments on three benchmark datasets demonstrate the effectiveness of our approach.1 
    more » « less
  3. Recent literature focuses on utilizing the entity information in the sentence-level relation extraction (RE), but this risks leaking superficial and spurious clues of relations. As a result, RE still suffers from unintended entity bias, i.e., the spurious correlation between entity mentions (names) and relations. Entity bias can mislead the RE models to extract the relations that do not exist in the text. To combat this issue, some previous work masks the entity mentions to prevent the RE models from over-fitting entity mentions. However, this strategy degrades the RE performance because it loses the semantic information of entities. In this paper, we propose the CoRE (Counterfactual Analysis based Relation Extraction) debiasing method that guides the RE models to focus on the main effects of textual context without losing the entity information. We first construct a causal graph for RE, which models the dependencies between variables in RE models. Then, we propose to conduct counterfactual analysis on our causal graph to distill and mitigate the entity bias, that captures the causal effects of specific entity mentions in each instance. Note that our CoRE method is model-agnostic to debias existing RE systems during inference without changing their training processes. Extensive experimental results demonstrate that our CoRE yields significant gains on both effectiveness and generalization for RE. The source code is provided at: https://github.com/vanoracai/CoRE. 
    more » « less
  4. Relation Extraction (RE) is one of the fundamental tasks in Information Extraction and Natural Language Processing. Dependency trees have been shown to be a very useful source of information for this task. The current deep learning models for relation extraction has mainly exploited this dependency information by guiding their computation along the structures of the dependency trees. One potential problem with this approach is it might prevent the models from capturing important context information beyond syntactic structures and cause the poor cross-domain generalization. This paper introduces a novel method to use dependency trees in RE for deep learning models that jointly predicts dependency and semantics relations. We also propose a new mechanism to control the information flow in the model based on the input entity mentions. Our extensive experiments on benchmark datasets show that the proposed model outperforms the existing methods for RE significantly.

     
    more » « less
  5. Extracting entities and their relations from text is an important task for understanding massive text corpora. Open information extraction (IE) systems mine relation tuples (i.e., entity arguments and a predicate string to describe their relation) from sentences. However, current open IE systems ignore the fact that global statistics in a large corpus can be collectively leveraged to identify high-quality sentence-level extractions. In this paper, we propose a novel open IE system, called ReMine, which integrates local context signal and global structural signal in a unified framework with distant supervision. The new system can be efficiently applied to different domains as it uses facts from external knowledge bases as supervision; and can effectively score sentence-level tuple extractions based on corpus-level statistics. Specifically, we design a joint optimization problem to unify (1) segmenting entity/relation phrases in individual sentences based on local context; and (2) measuring the quality of sentence-level extractions with a translating-based objective. Experiments on real-world corpora from different domains demonstrate the effectiveness and robustness of ReMine when compared to other open IE systems. 
    more » « less