Halide ions are naturally abundant in oceans and estuaries. Large amounts of highly saline efflux are also made and discharged to surface water from desalination processes and from unconventional oil and gas recovery. These highly concentrated halides can generate reactive halogen radicals. However, the redox reactions of halogen radicals with heavy metals or transition metals have received little attention. Here, we report undiscovered fast oxidation of manganese ions (Mn2+) by reactive halogen radicals. Hydroxyl radicals (˙OH) are produced by nitrate photolysis. While ˙OH radicals play a limited role in the direct oxidation of Mn2+, ˙OH can react with halide ions to generate reactive halogen radicals to oxidize Mn2+. In addition, more Mn2+ was oxidized by bromide (Br) radicals generated from 1 mM Br− than by chloride (Cl) radicals generated from 500 mM Cl−. In the presence of Br radicals, the abiotic oxidation rate of Mn2+ to Mn(IV)O2 nanosheets is greatly promoted, showing a 62% increase in Mn2+ (aq) oxidation within 6 h of reaction. This study advances our understanding of natural Mn2+ oxidation processes and highlights unexpected impacts of reactive halogen radicals on redox activities with heavy metals and corresponding nanoscale solid mineral formation in brine. This work suggests a new, environmentally-friendly, and facile pathway for synthesizing MnO2 nanosheets. 
                        more » 
                        « less   
                    
                            
                            pH-dependent production of molecular chlorine, bromine, and iodine from frozen saline surfaces
                        
                    
    
            Abstract. The mechanisms of molecular halogen production from frozen saline surfacesremain incompletely understood, limiting our ability to predict atmosphericoxidation and composition in polar regions. In this laboratory study,condensed-phase hydroxyl radicals (OH) were photochemically generated infrozen saltwater solutions that mimicked the ionic composition of oceanwater. These hydroxyl radicals were found to oxidize Cl−, Br−, andI−, leading to the release of Cl2, Br2, I2, and IBr. Atmoderately acidic pH (buffered between 4.5 and 4.8), irradiation of icecontaining OH precursors (either of hydrogen peroxide or nitrite ion)produced elevated amounts of I2. Subsequent addition of O3produced additional I2, as well as small amounts of Br2. At lowerpH (1.7–2.2) and in the presence of an OH precursor, rapid dark conversionof I− to I2 occurred from reactions with hydrogen peroxide ornitrite, followed by substantial photochemical production of Br2 uponirradiation. Exposure to O3 under these low pH conditions alsoincreased production of Br2 and I2; this likely results fromdirect O3 reactions with halides, as well as the production ofgas-phase HOBr and HOI that subsequently diffuse to frozen solution to reactwith Br− and I−. Photochemical production of Cl2 was onlyobserved when the irradiated sample was composed of high-purity NaCl andhydrogen peroxide (acting as the OH precursor) at pH = 1.8. Thoughcondensed-phase OH was shown to produce Cl2 in this study, kineticscalculations suggest that heterogeneous recycling chemistry may be equallyor more important for Cl2 production in the Arctic atmosphere. Thecondensed-phase OH-mediated halogen production mechanisms demonstrated hereare consistent with those proposed from recent Arctic field observations ofmolecular halogen production from snowpacks. These reactions, even if slow,may be important for providing seed halogens to the Arctic atmosphere. Ourresults suggest the observed molecular halogen products are dependent on therelative concentrations of halides at the ice surface, as we only observewhat diffuses to the air–surface interface. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1417668
- PAR ID:
- 10213989
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 19
- Issue:
- 7
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 4917 to 4931
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In meeting rapidly growing demands for energy and clean water, engineered systems such as unconventional oil and gas recovery and desalination processes produce large amounts of briny water. In the environment, these highly concentrated halides can be oxidized and transformed to reactive halogen radicals, whose roles in the degradation and transformation of organic pollutants have been studied. However, redox reactions between halogen radicals and heavy metal ions are still poorly understood. In this work, we found that aqueous manganese ions (Mn2+) could be oxidized to Mn oxide solids by reactive halogen radicals generated from reactions between halide ions and hydroxyl radicals or between halide ions and triplet state dissolved organic matter. In particular, more Mn2+ was oxidized by Br radicals generated from bromide ion (Br−) than by Cl radicals generated from chloride ion (Cl−), even though the concentrations of Br− in surface waters are much lower than Cl− concentrations. In addition, the highly concentrated halides greatly increased the ionic strength of the solution, affecting Mn2+ oxidation kinetics and the crystallinity and oxidation state of the newly formed Mn oxides. These newly discovered pathways involving Mn2+(aq) and reactive halogen radicals aid in understanding the generation of abiotic Mn oxide solids and forecasting their redox activities. Moreover, this work emphasizes the critical need for a better knowledge of the roles of reactive halogen radicals in inorganic redox reactions.more » « less
- 
            Dissolved natural organic matter (DOM) is a complex matrix of organic matter that is ubiquitous in natural aquatic environments. So far, substantial research has been conducted on the DOM adsorption on Mn oxides as well as the reduction processes of Mn oxides by DOM. However, little is known about the oxidative roles of DOM in oxidizing Mn2+(aq) to Mn(III/IV) oxide solids. Sunlight-driven processes can initiate the degradation of DOM accompanied by the formation of photochemically produced reactive intermediates, including excited triplet state DOM (3DOM*), hydroxyl radical (•OH), superoxide radical (O2•−), hydrogen peroxide (H2O2), and singlet oxygen (1O2). Further, in the presence of halide ions, reactive halogen species can be generated by reactions between 3DOM* and halide ions, and by reactions between •OH and halide ions. In this study, we found that the solution pH controlled the oxidation of Mn2+(aq) to Mn oxide solids during photolysis of DOM. Among the reactive oxygen species, Mn2+(aq) was found to be oxidized to Mn oxide solids mainly by O2•−. The DOM with different quantities of aromatic functional groups affected its oxidative capability. With the addition of bromide ions (Br−), Mn2+(aq) oxidation was promoted further by formation Br radicals, which can also oxidize Mn2+(aq) to Mn oxide solids. These findings can help us better understand the oxidative role of DOM in the formation of Mn oxide solids in organic-rich surface water. In addition, this study assists in comprehending the impacts of the photolytic reactions between DOM and halide ions and their resulting reactive oxygen and halogen species on the oxidation and reduction processes of other transition metal oxides in the environment.more » « less
- 
            Abstract Burning plastic waste releases massive amounts of atmospheric particulate matter (PM), but its chemical composition and health-related properties are largely unelucidated. Here we characterize chemical composition of PM generated from burning common types of plastics and quantify reactive oxygen/chlorine species and PM oxidative potential (OP). We find that plastic burning PM contains high levels of environmentally persistent free radicals (EPFRs), transition metals, and polycyclic aromatic hydrocarbons. In the aqueous phase, PM generates hydrogen peroxide, •OH radicals, and carbon-centered organic radicals, exhibiting high levels of OP as characterized by dithiothreitol (DTT) and OH assays. Remarkably, plastic burning PM is associated with high concentrations of hypochlorous acid. Kinetic model simulations demonstrate that the PM respiratory deposition leads to •OH formation via complex redox reactions among its constituents and antioxidants in lung lining fluid. Our study highlights significant atmospheric and health implications for unregulated plastic burning, particularly common in many areas of developing countries.more » « less
- 
            Manganese (Mn) oxide solids widely exist in nature, serving as both electron donors and acceptors for a variety of redox reactions. Previous studies have highlighted the adsorption of dissolved organic matter (DOM) on Mn oxides, as well as the reduction of Mn oxides by DOM. Here, we show the underappreciated roles of photolytic reactions of DOM in Mn2+(aq) oxidation and its consequential formation of Mn oxide solids. During the photolysis of DOM, reactive intermediates including excited triplet state DOM (3DOM*), hydroxyl radical (•OH), superoxide radical (O2•−), hydrogen peroxide (H2O2), and singlet oxygen (1O2) can be generated. Among them, we found that O2•− was responsible for Mn oxidation. In addition, in the presence of bromide ions (Br−), the photolytic reactions between DOM and Br− formed reactive bromide radicals and facilitated the oxidation of Mn2+(aq) to Mn oxide solids. Moreover, the composition of DOM affected its oxidative capability. When DOM contained more aromatic functional groups, we observed more oxidation of Mn2+ to Mn oxides. These new findings advance our knowledge of natural Mn2+ oxidation and Mn(III/IV) oxide formation, as well as the hitherto overlooked oxidative role of DOM in the oxidation of metal ions in surface water under sunlight illumination.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    