Giant lipid vesicles have been used extensively as a synthetic cell model to recapitulate various life-like processes, including in vitro protein synthesis, DNA replication, and cytoskeleton organization. Cell-sized lipid vesicles are mechanically fragile in nature and prone to rupture due to osmotic stress, which limits their usability. Recently, peptide vesicles have been introduced as an alternative chassis material for synthetic cells that are more robust and stable than lipid vesicles, and can withstand harsh conditions including pH, thermal, and osmotic variations. In this work, we combine coarse-grained molecular simulation, enhanced sampling free energy calculations, Gaussian process regression, and Bayesian optimization to construct an active learning screening for diblock amphiphilic elastin-like polypeptides capable of forming thermodynamically stable vesicular structures suitable for the self-assembly of synthetic peptide vesicles. Our computational screen identifies a number of promising sequences that form peptidic vesicles with high thermodynamic stabilities relative to isolated peptides in bulk solvent on the order of 10-15 k B T per amino acid residue.
more »
« less
In search of a novel chassis material for synthetic cells: emergence of synthetic peptide compartment
Giant lipid vesicles have been used extensively as a synthetic cell model to recapitulate various life-like processes, including in vitro protein synthesis, DNA replication, and cytoskeleton organization. Cell-sized lipid vesicles are mechanically fragile in nature and prone to rupture due to osmotic stress, which limits their usability. Recently, peptide vesicles have been introduced as a synthetic cell model that would potentially overcome the aforementioned limitations. Peptide vesicles are robust, reasonably more stable than lipid vesicles and can withstand harsh conditions including pH, thermal, and osmotic variations. This mini-review summarizes the current state-of-the-art in the design, engineering, and realization of peptide-based chassis materials, including both experimental and computational work. We present an outlook for simulation-aided and data-driven design and experimental realization of engineered and multifunctional synthetic cells.
more »
« less
- PAR ID:
- 10214036
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 16
- Issue:
- 48
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 10769 to 10780
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Creating a suitable compartment for synthetic cells has led the exploration of different cell chassis materials from phospholipids to polymer to protein-polymer conjugates. Currently, the majority of cell-like compartments are made of lipid molecules as the resulting membrane resembles that of a natural cell. However, cell-sized lipid vesicles are prone to physical and chemical stresses and can be unstable in hosting biochemical reactions within. Recently, peptide vesicles that are more robust and stable were developed as a new chassis material for synthetic cells. Here we demonstrate the facile and robust generation of giant peptide vesicles made of elastin-like polypeptides (ELPs) by using an emulsion transfer method. We show that these peptide vesicles can stably encapsulate molecules and can host cell-free expression reactions. We also demonstrate membrane incorporation of another amphiphilic ELP into existing peptide vesicles. Since ELPs are genetically encoded, the approaches presented here provide exciting opportunities to engineer synthetic cell membranes.more » « less
-
null (Ed.)Lipid vesicles have received considerable interest because of their applications to in vitro reductionist cell membrane models as well as therapeutic delivery vehicles. In these contexts, the mechanical response of vesicles in nonequilibrium environments plays a key role in determining the corresponding dynamics. A common understanding of the response of lipid vesicles upon exposure to a hypotonic solution is a characteristic pulsatile behavior. Recent experiments, however, have shown vesicles exploding under an osmotic shock generated by photo-reactions, yet the explanatory mechanism is unknown. Here we present a generalized biophysical model incorporating a stochastic account of membrane rupture to describe both swell-burst-reseal cycling and exploding dynamics. This model agrees well with experimental observations, and it unravels that the sudden osmotic shock strains the vesicle at an extreme rate, driving the vesicle into buckling instabilities responsible for membrane fragmentation, i.e. explosion. Our work not only advances the fundamental framework for non-equilibrium vesicle dynamics under osmotic stress, but also offers design guidelines for programmable vesicle-encapsulated substance release in therapeutic carriers.more » « less
-
Lipid vesicles immersed in solute gradients are predicted to migrate from regions of high to low solute concentration due to osmotic flows induced across their semipermeable membranes. This process─known as osmophoresis─is potentially relevant to biological processes such as vesicle trafficking and cell migration; however, there exist significant discrepancies (several orders of magnitude) between experimental observations and theoretical predictions for the vesicle speed. Here, we seek to reconcile predictions of osmophoresis with observations of vesicle motion in osmotic gradients. We prepare quasi-steady solute gradients in a microfluidic chamber using density-matched solutions of sucrose and glucose to eliminate buoyancy-driven flows. We quantify the motions of giant DLPC vesicles and Brownian tracer particles in such gradients using Bayesian analysis of particle tracking data. Despite efforts to mitigate convective flows, we observe directed motion of both lipid vesicles and tracer particles in a common direction at comparable speeds of order 10 nm/s. These observations are not inconsistent with models of osmophoresis, which predict slower motion at ca. 1 nm/s; however, experimental uncertainty and the confounding effects of fluid convection prohibit a quantitative comparison. In contrast to previous reports, we find no evidence for anomalously fast osmophoresis of lipid vesicles when fluid convection is mitigated and quantified. We discuss strategies for enhancing the speed of osmophoresis using high permeability membranes and geometric confinement.more » « less
-
Cell-free expression (CFE) systems are powerful tools in synthetic biology that allow biomimicry of cellular functions like biosensing and energy regeneration in synthetic cells. Reconstruction of a wide range of cellular processes, however, requires successful reconstitution of membrane proteins into the membrane of synthetic cells. While expression of soluble proteins is usually successful in common CFE systems, reconstitution of membrane proteins in lipid bilayers of synthetic cells has proven to be challenging. Here, a method for reconstitution of a model membrane protein, bacterial glutamate receptor (GluR0), in giant unilamellar vesicles (GUVs) as model synthetic cells based on encapsulation and incubation of the CFE reaction inside synthetic cells is demonstrated. Utilizing this platform, the effect of substituting N-terminal signal peptide of GluR0 with proteorhodopsin signal peptide on successful co-translational translocation of GluR0 into membranes of hybrid GUVs is demonstrated. This method provides a robust procedure that will allow cell-free reconstitution of various membrane proteins in synthetic cells.more » « less