skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Nature of C(sp 3 )–C(sp 2 ) Bond Formation in Nickel-Catalyzed Tertiary Radical Cross-Couplings: A Case Study of Ni/Photoredox Catalytic Cross-Coupling of Alkyl Radicals and Aryl Halides
Award ID(s):
1751568
PAR ID:
10214129
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
142
Issue:
15
ISSN:
0002-7863
Page Range / eLocation ID:
7225 to 7234
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The iron-catalyzed C(sp 2 )–C(sp 3 ) cross-coupling provides a highly economical route to exceedingly valuable alkylated arenes that are widespread in medicinal chemistry and materials science. Herein, we report an operationally-simple protocol for the selective C(sp 2 )–C(sp 3 ) iron-catalyzed cross-coupling of aryl chlorides with Grignard reagents at low catalyst loading. A broad range of electronically-varied aryl and heteroaryl chlorides underwent the cross-coupling using challenging alkyl organometallics possessing β-hydrogens with high efficiency up to 2000 TON. A notable feature of the protocol is the use of environmentally-friendly cyclic urea ligands. A series of guidelines to predict cross-coupling reactivity of aryl electrophiles is provided. 
    more » « less
  2. Abstract The first cobalt‐catalyzed cross‐coupling of aryl tosylates with alkyl and aryl Grignard reagents is reported. The catalytic system uses CoF3and NHCs (NHC=N‐heterocyclic carbene) as ancillary ligands. The reaction proceeds via highly selective C−O bond functionalization, leading to the corresponding products in up to 98 % yield. The employment of alkyl Grignard reagents allows to achieve a rare C(sp2)−C(sp3) cross‐coupling of C−O electrophiles, circumventing isomerization and β‐hydride elimination problems. The use of aryl Grignards leads to the formation of biaryls. The C−O cross‐coupling sets the stage for a sequential cross‐coupling by exploiting the orthogonal selectivity of the catalytic system. 
    more » « less
  3. Sacrificial anodes composed of inexpensive metals such as Zn, Fe and Mg are widely used to support electrochemical nickel-catalyzed cross-electrophile coupling (XEC) reactions, in addition to other reductive electrochemical transformations. Such anodes are appealing because they provide a stable counter-electrode potential and typically avoid interference with the reductive chemistry. The present study outlines development of an electrochemical Ni-catalyzed XEC reaction that streamlines access to a key pharmaceutical intermediate. Metal ions derived from sacrificial anode oxidation, however, directly contribute to homocoupling and proto-dehalogenation side products that are commonly formed in chemical and electrochemical Ni-catalyzed XEC reactions. Use of a divided cell limits interference by the anode-derived metal ions and supports high product yield with negligible side product formation, introducing a strategy to overcome one of the main limitations of Ni-catalyzed XEC. 
    more » « less