skip to main content


Title: On the Nature of C(sp 3 )–C(sp 2 ) Bond Formation in Nickel-Catalyzed Tertiary Radical Cross-Couplings: A Case Study of Ni/Photoredox Catalytic Cross-Coupling of Alkyl Radicals and Aryl Halides
Award ID(s):
1751568
NSF-PAR ID:
10214129
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
142
Issue:
15
ISSN:
0002-7863
Page Range / eLocation ID:
7225 to 7234
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The first cobalt‐catalyzed cross‐coupling of aryl tosylates with alkyl and aryl Grignard reagents is reported. The catalytic system uses CoF3and NHCs (NHC=N‐heterocyclic carbene) as ancillary ligands. The reaction proceeds via highly selective C−O bond functionalization, leading to the corresponding products in up to 98 % yield. The employment of alkyl Grignard reagents allows to achieve a rare C(sp2)−C(sp3) cross‐coupling of C−O electrophiles, circumventing isomerization and β‐hydride elimination problems. The use of aryl Grignards leads to the formation of biaryls. The C−O cross‐coupling sets the stage for a sequential cross‐coupling by exploiting the orthogonal selectivity of the catalytic system.

     
    more » « less
  2. Although iron catalyzed cross-coupling reactions show extraordinary promise in reducing the environmental impact of more toxic and scarce transition metals, one of the main challenges is the use of reprotoxic NMP (NMP = N -methylpyrrolidone) as the key ligand to iron in the most successful protocols in this reactivity platform. Herein, we report that non-toxic and sustainable N -butylpyrrolidone (NBP) serves as a highly effective substitute for NMP in iron-catalyzed C(sp 2 )–C(sp 3 ) cross-coupling of aryl chlorides with alkyl Grignard reagents. This challenging alkylation proceeds with organometallics bearing β-hydrogens with efficiency superseding or matching that of NMP with ample scope and broad functional group tolerance. Appealing applications are demonstrated in the cross-coupling in the presence of sensitive functional groups and the synthesis of several pharmaceutical intermediates, including a dual NK1/serotonin inhibitor, a fibrinolysis inhibitor and an antifungal agent. Considering that the iron/NMP system has emerged as one of the most powerful iron cross-coupling technologies available in both academic and industrial research, we anticipate that this method will be of broad interest. 
    more » « less
  3. The iron-catalyzed C(sp 2 )–C(sp 3 ) cross-coupling provides a highly economical route to exceedingly valuable alkylated arenes that are widespread in medicinal chemistry and materials science. Herein, we report an operationally-simple protocol for the selective C(sp 2 )–C(sp 3 ) iron-catalyzed cross-coupling of aryl chlorides with Grignard reagents at low catalyst loading. A broad range of electronically-varied aryl and heteroaryl chlorides underwent the cross-coupling using challenging alkyl organometallics possessing β-hydrogens with high efficiency up to 2000 TON. A notable feature of the protocol is the use of environmentally-friendly cyclic urea ligands. A series of guidelines to predict cross-coupling reactivity of aryl electrophiles is provided. 
    more » « less