skip to main content


Title: Competing effects of spreading rate, crystal fractionation and source variability on Fe isotope systematics in mid-ocean ridge lavas
Abstract

Two-thirds of the Earth is covered by mid-ocean ridge basalts, which form along a network of divergent plate margins. Basalts along these margins display a chemical diversity, which is consequent to a complex interplay of partial mantle melting in the upper mantle and magmatic differentiation processes in lower crustal levels. Igneous differentiation (crystal fractionation, partial melting) and source heterogeneity, in general, are key drivers creating variable chemistry in mid-ocean ridge basalts. This variability is reflected in iron isotope systematics (expressed as δ57Fe), showing a total range of 0.2 ‰ from δ57Fe =  + 0.05 to + 0.25 ‰. Respective contributions of source heterogeneity and magma differentiation leading to this diversity, however, remain elusive. This study investigates the iron isotope systematics in basalts from the ultraslow spreading Gakkel Ridge in the Arctic Ocean and compares them to existing data from the fast spreading East Pacific Rise ridge. Results indicate that Gakkel lavas are driven to heavier iron isotope compositions through partial melting processes, whereas effects of igneous differentiation are minor. This is in stark contrast to fast spreading ridges showing reversed effects of near negligible partial melting effects followed by large isotope fractionation along the liquid line of descent. Gakkel lavas further reveal mantle heterogeneity that is superimposed on the igneous differentiation effects, showing that upper mantle Fe isotope heterogeneity can be transmitted into erupting basalts in the absence of homogenisation processes in sub-oceanic magma chambers.

 
more » « less
NSF-PAR ID:
10214390
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The break-up of supercontinents is often temporally and spatially associated with large outpourings of basaltic magmas in the form of large igneous provinces (LIPs) and seaward dipping reflectors (SDRs). A widespread view is that the upwelling of hot mantle plumes drives both continental break-up and generation of associated LIPs. This is supported by petrologic estimates of the temperature from olivine-melt thermometers applied to basaltic magmas. These thermometers must be applied to a primary mantle-derived magma, requiring the selection of an appropriate primitive magma and an assumption of how much olivine is to be back-added to correct for fractional crystallization. We evaluated the effects of these assumptions on formation temperatures by compiling and analyzing a database of North Atlantic igneous province (NAIP) and Central Atlantic magmatic province (CAMP) lavas and olivines. Ni and FeOT systematics suggest that many picrite magmas have undergone olivine addition and are not true liquids, requiring careful selection of primitive magmas. The maximum amount of back-added olivine was determined by constraining mantle peridotite melt fractions for a range of possible mantle potential temperatures and continental lithosphere thicknesses. Using an empirical relationship between melting degree and forsterite (Fo) content, we show that the possible maximum olivine forsterite content in equilibrium with NAIP magmas is 90.9, which is lower than the maximum olivine forsterite content observed in the NAIP olivine population. We infer primary magmas that lead to mantle potential temperatures of 1420°C for the NAIP and 1330°C for CAMP. Using a similar approach for consistency, we estimate a mantle potential temperature of 1350°C for mid-ocean ridge basalts (MORB). Our results suggest that LIPs associated with continental break-up are not significantly hotter than MORB, which suggests that continental break-up may not be driven by deep-seated thermal plumes. Instead, we suggest that such voluminous magmatism might be related to preferential melting of fertile components within the lithosphere triggered by far-field extensional stresses.

     
    more » « less
  2. Abstract

    Carbonatite volcanism remains poorly understood compared to silicic volcanism due to the scarcity of carbonatite volcanoes worldwide and because volcanic H2O and CO2—major components in carbonatite volcanic systems—are not well preserved in the rock record. To further our understanding of carbonatite genesis, we utilize the non‐traditional thallium (Tl) isotope system in Khanneshin carbonatites in Afghanistan. These carbonatites contain 250–30,000 ng/g Tl and have ε205Tl values (−4.6 to +4.6) that span much of the terrestrial igneous range. We observe that δ18OVSMOW(+8.6‰ to +23.5‰) correlates positively with δ13CVPDB(−4.6‰ to +3.5‰) and ε205Tl up to δ18O = 15‰. Rayleigh fractionation of calcite from an immiscible CO2‐H2O fluid with a mantle‐like starting composition can explain the δ18O and δ13C—but not ε205Tl—trends. Biotite fractionates Tl isotopes in other magmatic settings, so we hypothesize that a Tl‐rich hydrous brine caused potassic metasomatism (i.e., biotite fenitization) of wall rock that increased the ε205Tl of the residual magma‐fluid reservoir. Our results imply that, in carbonatitic volcanic systems, simultaneous igneous differentiation and potassic metasomatism increase ε205Tl, δ18O, δ13C, and light rare earth element concentrations in residual fluids. Our fractionation models suggest that the Tl isotopic compositions of the primary magmas were among the isotopically lightest (less than or equal to ε205Tl = −4.6) material derived from the mantle for which Tl isotopic constraints exist. If so, the ultimate source of Tl in Khanneshin lavas—and perhaps carbonatites elsewhere—may be recycled ocean crust.

     
    more » « less
  3. Hotspot tracks (quasilinear chains of seamounts, ridges, and other volcanic structures) provide important records of plate motions, as well as mantle geodynamics, magma flux, and mantle source compositions. The Tristan-Gough-Walvis Ridge (TGW) hotspot track, extending from the active volcanic islands of Tristan da Cunha and Gough through a province of guyots and then along Walvis Ridge to the Etendeka flood basalt province, forms one of the most prominent and complex global hotspot tracks. The TGW hotspot track displays a tight linear age progression in which ages increase from the islands to the flood basalts (covering ~135 My). Unlike Pacific tracks, which are simple chains of seamounts that are often compared to chains of pearls, the TGW track is alternately a steep-sided narrow ridge, an oceanic plateau, subparallel linear ridges and chains of seamounts, and areas of what appear to be randomly dispersed seamounts. The track displays isotopic zonation over the last ~70 My. The zonation appears near the middle of the track just before it splits into two to three chains of ridge- and guyot-type seamounts. The older ridge is also overprinted with age-progressive late-stage volcanism, which was emplaced ~30–40 My after the initial eruptions and has a distinct isotopic composition. The plan for Expedition 391 was to drill at six sites, three along Walvis Ridge and three in the seamount (guyot) province, to gather igneous rocks to better understand the formation of track edifices, the temporal and geochemical evolution of the hotspot, and the variation in paleolatitudes at which the volcanic edifices formed. After a delay of 18 days to address a shipboard outbreak of the coronavirus disease 2019 (COVID-19) virus, Expedition 391 proceeded to drill at four of the proposed sites: three sites on the eastern Walvis Ridge around Valdivia Bank, an ocean plateau within the ridge, and one site on the lower flank of a guyot in the Center track, a ridge located between the Tristan subtrack (which extends from the end of Walvis Ridge to the island of Tristan da Cunha) and the Gough subtrack (which extends from Walvis Ridge to the island of Gough). One hole was drilled at Site U1575, located on a low portion of the northeastern Walvis Ridge north of Valdivia Bank. At this location, 209.9 m of sediments and 122.4 m of igneous basement were cored. The latter comprised 10 submarine lava units consisting of pillow, lobate, sheet, and massive lava flows, the thickest of which was ~21 m. Most lavas are tholeiitic, but some alkalic basalts were recovered. A portion of the igneous succession consists of low-Ti basalts, which are unusual because they appear in the Etendeka flood basalts but have not been previously found on Walvis Ridge. Two holes were drilled at Site U1576 on the west flank of Valdivia Bank. The first hole was terminated because a bit jammed shortly after penetrating igneous basement. Hole U1576A recovered a remarkable ~380 m thick sedimentary section consisting mostly of chalk covering a nearly complete sequence from Paleocene to Late Cretaceous (Campanian). These sediments display short and long cyclic color changes that imply astronomically forced and longer term paleoenvironmental changes. The igneous basement yielded 11 submarine lava units ranging from pillows to massive flows, which have compositions varying from tholeiitic basalt to basaltic andesite, the first occurrence of this composition recovered from the TGW track. These units are separated by seven sedimentary chalk units that range in thickness from 0.1 to 11.6 m, implying a long-term interplay of sedimentation and lava eruptions. Coring at Site U1577, on the extreme eastern flank of Valdivia Bank, penetrated a 154 m thick sedimentary section, the bottom ~108 m of which is Maastrichtian–Campanian (possibly Santonian) chalk with vitric tephra layers. Igneous basement coring progressed only 39.1 m below the sediment-basalt contact, recovering three massive submarine tholeiite basalt lava flows that are 4.1, 15.5, and >19.1 m thick, respectively. Paleomagnetic data from Sites U1577 and U1576 indicate that their volcanic basements formed just before the end of the Cretaceous Normal Superchron and during Chron 33r, shortly afterward, respectively. Biostratigraphic and paleomagnetic data suggest an east–west age progression across Valdivia Bank, becoming younger westward. Site U1578, located on a Center track guyot, provided a long and varied igneous section. After coring through 184.3 m of pelagic carbonate sediments mainly consisting of Eocene and Paleocene chalk, Hole U1578A cored 302.1 m of igneous basement. Basement lavas are largely pillows but are interspersed with sheet and massive flows. Lava compositions are mostly alkalic basalts with some hawaiite. Several intervals contain abundant olivine, and some of the pillow stacks consist of basalt with remarkably high Ti content. The igneous sequence is interrupted by 10 sedimentary interbeds consisting of chalk and volcaniclastics and ranging in thickness from 0.46 to 10.19 m. Paleomagnetic data display a change in basement magnetic polarity ~100 m above the base of the hole. Combining magnetic stratigraphy with biostratigraphic data, the igneous section is inferred to span >1 My. Abundant glass from pillow lava margins was recovered at Sites U1575, U1576, and U1578. Although the igneous penetration was only two-thirds of the planned amount, drilling during Expedition 391 obtained samples that clearly will lead to a deeper understanding of the evolution of the Tristan-Gough hotspot and its track. Relatively fresh basalts with good recovery will provide ample samples for geochemical, geochronologic, and paleomagnetic studies. Good recovery of Late Cretaceous and early Cenozoic chalk successions provides samples for paleoenvironmental study. 
    more » « less
  4. The Earth’s mantle is heterogeneous as a result of early planetary differentiation and subsequent crustal recycling during plate tectonics. Radiogenic isotope signatures of mid-ocean ridge basalts have been used for decades to map mantle composition, defining the depleted mantle endmember. These lavas, however, homogenize via magma mixing and may not capture the full chemical variability of their mantle source. Here, we show that the depleted mantle is significantly more heterogeneous than previously inferred from the compositions of lavas at the surface, extending to highly enriched compositions. We perform high-spatial-resolution isotopic analyses on clinopyroxene and plagioclase from lower crustal gabbros drilled on a depleted ridge segment of the northern Mid-Atlantic Ridge. These primitive cumulate minerals record nearly the full heterogeneity observed along the northern Mid-Atlantic Ridge, including hotspots. Our results demonstrate that substantial mantle heterogeneity is concealed in the lower oceanic crust and that melts derived from distinct mantle components can be delivered to the lower crust on a centimetre scale. These findings provide a starting point for re-evaluation of models of plate recycling, mantle convection and melt transport in the mantle and the crust. 
    more » « less
  5. Zirconium (Zr) stable isotope variations occur among co-existing Zr-rich accessory phases as well as at the bulk-rock scale, but the petrologic mechanism(s) responsible for Zr isotope fractionation during magmatic differentiation remain unclear. Juvenile magma generation and intra-crustal differentiation in convergent continental margins may play a crucial role in developing Zr isotope variations, and the Northern Volcanic Zone of the Andes is an ideal setting to test this hypothesis. To investigate the influence of these processes on Zr stable isotope compositions, we report δ94/90ZrNIST of whole rock samples from: 1) juvenile arc basalts from the Quaternary Granatifera Tuff, Colombia; 2) lower crust-derived garnet pyroxenites (i.e., arclogites), hornblendites, and gabbroic cumulates found in the same unit; and 3) felsic volcanic products from the Doña Juana Volcanic Complex, a dacitic composite volcano in close proximity to and partially covering the Granatifera Tuff. The basalts have δ94/90ZrNIST values ranging from −0.025 ± 0.018 ‰ to +0.003 ± 0.015 ‰ (n = 8), within the range of mid-ocean ridge basalts. The dacites have δ94/90ZrNIST values ranging from +0.008 ± 0.013 ‰ to +0.043 ± 0.015 ‰ (n = 14), slightly positive relative to the Granatifera and mid-ocean ridge basalts. In contrast, the (ultra)mafic cumulates have highly variable, predominantly positive δ94/90ZrNIST values, ranging from −0.134 ± 0.012 ‰ to +0.428 ± 0.012 ‰ (n = 15). Individual grains and mineral fractions of major rock-forming phases, including garnet (n = 21), amphibole (n = 9), and clinopyroxene (n = 18), were analyzed from 8 (ultra)mafic cumulates. The mineral fractions record highly variable Zr isotopic compositions, with inter-mineral fractionation (Δ94/90Zrgarnet-amphibole) up to 2.067 ‰. Recent ab initio calculations of Zr–O bond force constants in rock-forming phases predict limited inter-mineral Zr isotope fractionation in high-temperature environments, suggesting that the large fractionations we observe are not the product of vibrational equilibrium processes. Instead, we propose a scenario in which large Zr isotopic fractionations develop kinetically, induced by sub-solidus Zr diffusion between coexisting phases via changes in Zr distribution coefficients that arise from changes in temperature. Altogether, Zr isotope variability in this calc-alkaline continental arc setting exhibits no correlation with indices of magmatic differentiation (e.g., Mg#, SiO2), and is not a simple function of fractional crystallization. Furthermore, the garnet clinopyroxenite cumulates studied here represent density-unstable lower arc crust material; consequently, material with isotopically variable δ94/90Zr can be recycled into the mantle as a consequence of lower crustal foundering. 
    more » « less