skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Insights into Supercells and Their Environments from Three Decades of Targeted Radiosonde Observations
Abstract Hundreds of supercell proximity soundings obtained for field programs over the central United States are analyzed to reconcile differences in recent studies and to refine our knowledge of supercell environments. The large, storm-centric observation-based dataset and high vertical resolution of the sounding data provide an unprecedented look at supercell environments. Not surprisingly, storm-relative environmental helicity (SRH) is found to be larger in tornadic soundings than in nontornadic soundings. The primary finding that departs from previous studies is that storm-relative winds contribute substantially to the larger SRH. Stronger ground-relative winds and more rightward-deviant storm motions contribute to the larger storm-relative winds for the tornadic soundings. Spatial analyses of the soundings reveal lower near-ground pressure perturbations and stronger low- to midlevel cyclonic flow for the tornadic soundings, which suggests stronger mesocyclones, perhaps explaining the more rightward-deviant motions. Differences in the mean critical angle between the tornadic and nontornadic soundings are small and do not contribute to the larger mean SRH, but the tornadic soundings do have fewer instances of smaller (<60°) critical angles. Furthermore, the critical angle is shown to be a function of azimuth from the updraft. Other results include a low-to-the-ground (~250 m on average) hodograph kink for both the tornadic and nontornadic soundings and few notable differences in thermodynamic quantities, except for the expected lower LCLs related to higher RH for the tornadic soundings, somewhat smaller 0–3 km lapse rates in tornadic environments related to weaker/shallower capping inversions, and larger 0–3 km CAPE in near-field environments.  more » « less
Award ID(s):
1748715 1824811
PAR ID:
10214580
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Weather Review
Volume:
148
Issue:
12
ISSN:
0027-0644
Page Range / eLocation ID:
4893 to 4915
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A total of 257 supercell proximity soundings obtained for field programs over the central United States are compared with profiles extracted from the SPC mesoscale analysis system (the SFCOA) to understand how errors in the SFCOA and in its baseline model analysis system—the RUC/RAP—might impact climatological assessments of supercell environments. A primary result is that the SFCOA underestimates the low-level storm-relative winds and wind shear, a clear consequence of the lack of vertical resolution near the ground. The near-ground (≤500 m) wind shear is underestimated similarly in near-field, far-field, tornadic, and nontornadic supercell environments. The near-ground storm-relative winds, however, are underestimated the most in the near-field and in tornadic supercell environments. Underprediction of storm-relative winds is, therefore, a likely contributor to the lack of differences in storm-relative winds between nontornadic and tornadic supercell environments in past studies that use RUC/RAP-based analyses. Furthermore, these storm-relative wind errors could lead to an under emphasis of deep-layer SRH variables relative to shallower SRH in discriminating nontornadic from tornadic supercells. The mean critical angles are 5°–15° larger and farther from 90° in the observed soundings than in the SFCOA, particularly in the near field, likely indicating that the ratio of streamwise to crosswise horizontal vorticity is often smaller than that suggested by the SFCOA profiles. Errors in thermodynamic variables are less prevalent, but show low-level CAPE to be too low closer to the storms, a dry bias above the boundary layer, and the absence of shallow near-ground stable layers that are much more prevalent in tornadic supercell environments. Significance StatementA total of 257 radiosonde observations taken close to supercell thunderstorms during field programs over the last 25 years are compared with a model-based analysis system (the SFCOA), which is often used for studying supercell thunderstorm environments. We present error characteristics of the SFCOA as they relate to tornado production and distance to the storm to clarify interpretations of environments favorable for tornado production made from past studies that use the SFCOA. A primary result is that the SFCOA underpredicts the speed and shear of the air flowing toward the storm in many cases, which may lead to different interpretations of variables that are most important for discriminating tornadic from nontornadic supercell thunderstorms. These results help to refine our understanding of the conditions that support tornado formation, which provides guidance on environmental cues that can improve the prediction of supercell tornadoes. 
    more » « less
  2. null (Ed.)
    Abstract The near-ground wind profile exhibits significant control over the organization, intensity, and steadiness of low-level updrafts and mesocyclones in severe thunderstorms, and thus their probability of being associated with tornadogenesis. The present work builds upon recent improvements in supercell tornado forecasting by examining the possibility that storm-relative helicity (SRH) integrated over progressively shallower layers has increased skill in differentiating between significantly tornadic and nontornadic severe thunderstorms. For a population of severe thunderstorms in the United States and Europe, sounding-derived parameters are computed from the ERA5 reanalysis, which has significantly enhanced vertical resolution compared to prior analyses. The ERA5 is shown to represent U.S. convective environments similarly to the Storm Prediction Center’s mesoscale surface objective analysis, but its greater number of vertical levels in the lower troposphere permits calculations to be performed over shallower layers. In the ERA5, progressively shallower layers of SRH provide greater discrimination between nontornadic and significantly tornadic thunderstorms in both the United States and Europe. In the United States, the 0–100 m AGL layer has the highest forecast skill of any SRH layer tested, although gains are comparatively modest for layers shallower than 0–500 m AGL. In Europe, the benefit from using shallower layers of SRH is even greater; the lower-tropospheric SRH is by far the most skillful ingredient there, far exceeding related composite parameters like the significant tornado parameter (which has negligible skill in Europe). 
    more » « less
  3. Abstract This study explores how tornadic supercell soundings significantly differ from the same‐location and same‐hour baseline environment soundings, sampled from the days prior to or following the event. Permutation testing is used to identify whether sounding‐derived parameters mixed‐layer convective available potential energy and 0–1 km storm‐relative helicity are significantly different between the tornadic and baseline environment. Typically, in an environment with marginal values of certain key environmental parameters, anomalous values of those environmental parameters are more strongly associated with supercell tornadoes. Furthermore, many tornadic events already exhibit environmental conditions favorable for tornadic supercells a day prior to the event itself. Generally, supercell tornadoes that occur during typical peak tornadic activity time frames are easier to distinguish from baseline (non‐tornadic) environments compared to those occurring in other time frames. Spatiotemporal variations of distinguishability between tornadic and baseline environmental parameters add complexity to traditional parameter‐based fixed threshold forecasting. 
    more » « less
  4. Abstract This study examines the possibility that supercell tornado forecasts could be improved by utilizing the storm-relative helicity (SRH) in the lowest few hundred meters of the atmosphere (instead of much deeper layers). This hypothesis emerges from a growing body of literature linking the near-ground wind profile to the organization of the low-level mesocyclone and thus the probability of tornadogenesis. This study further addresses the ramifications of near-ground SRH to the skill of the significant tornado parameter (STP), which is probably the most commonly used environmental indicator for tornadic thunderstorms. Using a sample of 20 194 severe, right-moving supercells spanning a 13-yr period, sounding-derived parameters were compared using forecast verification metrics, emphasizing a high probability of detection for tornadic supercells while minimizing false alarms. This climatology reveals that the kinematic components of environmental profiles are more skillful at discriminating significantly tornadic supercells from severe, nontornadic supercells than the thermodynamic components. The effective-layer SRH has by far the greatest forecast skill among the components of the STP, as it is currently defined. However, using progressively shallower layers for the SRH calculation leads to increasing forecast skill. Replacing the effective-layer SRH with the 0–500 m AGL SRH in the formulation of STP increases the number of correctly predicted events by 8% and decreases the number of missed events and false alarms by 18%. These results provide promising evidence that forecast parameters can still be improved through increased understanding of the environmental controls on the processes that govern tornado formation. 
    more » « less
  5. Abstract Supercell storms can develop a “dynamical response” whereby upward accelerations in the lower troposphere amplify as a result of rotationally induced pressure falls aloft. These upward accelerations likely modulate a supercell’s ability to stretch near-surface vertical vorticity to achieve tornadogenesis. This study quantifies such a dynamical response as a function of environmental wind profiles commonly found near supercells. Self-organizing maps (SOMs) were used to identify recurring low-level wind profile patterns from 20,194 model-analyzed, near-supercell soundings. The SOM nodes with larger 0–500 m storm-relative helicity (SRH) and streamwise vorticity ( ω s ) corresponded to higher observed tornado probabilities. The distilled wind profiles from the SOMs were used to initialize idealized numerical simulations of updrafts. In environments with large 0–500 m SRH and large ω s , a rotationally induced pressure deficit, increased dynamic lifting, and a strengthened updraft resulted. The resulting upward-directed accelerations were an order of magnitude stronger than typical buoyant accelerations. At 500 m AGL, this dynamical response increased the vertical velocity by up to 25 m s –1 , vertical vorticity by up to 0.2 s –1 , and pressure deficit by up to 5 hPa. This response specifically augments the near-ground updraft (the midlevel updraft properties are almost identical across the simulations). However, dynamical responses only occurred in environments where 0–500 m SRH and ω s exceeded 110 m 2 s –2 and 0.015 s –1 , respectively. The presence vs. absence of this dynamical response may explain why environments with higher 0–500 m SRH and ω s correspond to greater tornado probabilities. 
    more » « less